66 research outputs found

    Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties

    Get PDF
    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported—high thermostability and high catalytic activity—compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered “superior” to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.France. Agence nationale de la recherch

    Résurrection du passé à l’aide de modèles hétérogènes d’évolution des séquences protéiques

    Get PDF
    The molecular reconstruction and resurrection of ancestral proteins is the major issue tackled in this thesis manuscript. While fossil molecular data are almost nonexistent, phylogenetic methods allow to estimate what were the most likely ancestral protein sequences along a phylogenetic tree describing the relationships between extant sequences. With these ancestral sequences, several biological hypotheses can be tested, from the evolution of protein function to the inference of ancient environments in which the ancestors were adatapted. These probabilistic estimations of ancestral sequences depend on substitution models giving the different probabilities of substitution between all pairs of amino acids. Classicaly, substitution models assume in a simplistic way that the evolutionary process remains homogeneous (constant) among sites of the multiple sequence alignment or between lineages. During the last decade, several methodological improvements were realised, with the description of substitution models allowing to account for the heterogeneity of the process among sites and in time. During my thesis, I developed new heterogeneous substitution models in Maximum Likelihood that were proved to better fit the data than any other homogeneous or heterogeneous models. I also demonstrated their better performance regarding the accuracy of ancestral sequence reconstruction. With the use of these models to reconstruct or resurrect ancestral proteins, my coworkers and I showed the adapation to temperature is a major determinant of evolutionary rates in Archaea. Furthermore, we also deciphed the nature of the phylogenetic signal informing substitution models to infer a non-parsimonious scenario for the adaptation to temperature during early Life on Earth, with a non-hyperthermophilic last universal common ancestor living at lower temperatures than its two descendants. Finally, we showed that the use of heterogeneous models allow to improve the functionality of resurrected proteins, opening the way to a better understanding of evolutionary mechanisms acting on biological sequencesLa reconstruction et la résurrection moléculaire de protéines ancestrales est au coeur de cette thèse. Alors que les données moléculaires fossiles sont quasi inexistantes, il est possible d'estimer quelles étaient les séquences ancestrales les plus probables le long d'un arbre phylogénétique décrivant les relations de parentés entre séquences actuelles. Avoir accès à ces séquences ancestrales permet alors de tester de nombreuses hypothèses biologiques, de la fonction des protéines ancestrales à l'adaptation des organismes à leur environnement. Cependant, ces inférences probabilistes de séquences ancestrales sont dépendantes de modèles de substitution fournissant les probabilités de changements entre acides aminés. Ces dernières années ont vu le développement de nouveaux modèles de substitutions d'acides aminés, permettant de mieux prendre en compte les phénomènes biologiques agissant sur l'évolution des séquences protéiques. Classiquement, les modèles supposent que le processus évolutif est à la fois le même pour tous les sites d'un alignement protéique et qu'il est resté constant au cours du temps lors de l'évolution des lignées. On parle alors de modèle homogène en temps et en sites. Les modèles récents, dits hétérogènes, ont alors permis de lever ces contraintes en permettant aux sites et/ou aux lignées d'évoluer selon différents processus. Durant cette thèse, de nouveaux modèles hétérogènes en temps et sites ont été développés en Maximum de Vraisemblance. Il a notamment été montré qu'ils permettent d'améliorer considérablement l'ajustement aux données et donc de mieux prendre en compte les phénomènes régissant l'évolution des séquences protéiques afin d'estimer de meilleurs séquences ancestrales. A l'aide de ces modèles et de reconstruction ou résurrection de protéines ancestrales en laboratoire, il a été montré que l'adaptation à la température est un déterminant majeur de la variation des taux évolutifs entre lignées d'Archées. De même, en appliquant ces modèles hétérogènes le long de l'arbre universel du vivant, il a été possible de mieux comprendre la nature du signal évolutif informant de manière non-parcimonieuse un ancêtre universel vivant à plus basse température que ses deux descendants, à savoir les ancêtres bactériens et archéens. Enfin, il a été montré que l'utilisation de tels modèles pouvait permettre d'améliorer la fonctionnalité des protéines ancestrales ressuscitées en laboratoire, ouvrant la voie à une meilleure compréhension des mécanismes évolutifs agissant sur les séquences biologique

    Response of the human gut and saliva microbiome to urbanization in Cameroon.

    Get PDF
    Urban populations from highly industrialized countries are characterized by a lower gut bacterial diversity as well as by changes in composition compared to rural populations from less industrialized countries. To unveil the mechanisms and factors leading to this diversity loss, it is necessary to identify the factors associated with urbanization-induced shifts at a smaller geographical scale, especially in less industrialized countries. To do so, we investigated potential associations between a variety of dietary, medical, parasitological and socio-cultural factors and the gut and saliva microbiomes of 147 individuals from three populations along an urbanization gradient in Cameroon. We found that the presence of Entamoeba sp., a commensal gut protozoan, followed by stool consistency, were major determinants of the gut microbiome diversity and composition. Interestingly, urban individuals have retained most of their gut eukaryotic and bacterial diversity despite significant changes in diet compared to the rural areas, suggesting that the loss of bacterial microbiome diversity observed in industrialized areas is likely associated with medication. Finally, we observed a weak positive correlation between the gut and the saliva microbiome diversity and composition, even though the saliva microbiome is mainly shaped by habitat-related factors

    Elevated rates of horizontal gene transfer in the industrialized human microbiome

    Get PDF
    Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.Peer reviewe

    GroussinGouy_rRNAalignment

    No full text
    This data file contains the rRNA alignment used in the study of the evolutionary rates within Archaea. Information about the species are available on the Supplementary File associated to our MBE article

    Resurrecting the past through heterogeneous models of protein sequence evolution

    No full text
    La reconstruction et la résurrection moléculaire de protéines ancestrales est au coeur de cette thèse. Alors que les données moléculaires fossiles sont quasi inexistantes, il est possible d'estimer quelles étaient les séquences ancestrales les plus probables le long d'un arbre phylogénétique décrivant les relations de parentés entre séquences actuelles. Avoir accès à ces séquences ancestrales permet alors de tester de nombreuses hypothèses biologiques, de la fonction des protéines ancestrales à l'adaptation des organismes à leur environnement. Cependant, ces inférences probabilistes de séquences ancestrales sont dépendantes de modèles de substitution fournissant les probabilités de changements entre acides aminés. Ces dernières années ont vu le développement de nouveaux modèles de substitutions d'acides aminés, permettant de mieux prendre en compte les phénomènes biologiques agissant sur l'évolution des séquences protéiques. Classiquement, les modèles supposent que le processus évolutif est à la fois le même pour tous les sites d'un alignement protéique et qu'il est resté constant au cours du temps lors de l'évolution des lignées. On parle alors de modèle homogène en temps et en sites. Les modèles récents, dits hétérogènes, ont alors permis de lever ces contraintes en permettant aux sites et/ou aux lignées d'évoluer selon différents processus. Durant cette thèse, de nouveaux modèles hétérogènes en temps et sites ont été développés en Maximum de Vraisemblance. Il a notamment été montré qu'ils permettent d'améliorer considérablement l'ajustement aux données et donc de mieux prendre en compte les phénomènes régissant l'évolution des séquences protéiques afin d'estimer de meilleurs séquences ancestrales. A l'aide de ces modèles et de reconstruction ou résurrection de protéines ancestrales en laboratoire, il a été montré que l'adaptation à la température est un déterminant majeur de la variation des taux évolutifs entre lignées d'Archées. De même, en appliquant ces modèles hétérogènes le long de l'arbre universel du vivant, il a été possible de mieux comprendre la nature du signal évolutif informant de manière non-parcimonieuse un ancêtre universel vivant à plus basse température que ses deux descendants, à savoir les ancêtres bactériens et archéens. Enfin, il a été montré que l'utilisation de tels modèles pouvait permettre d'améliorer la fonctionnalité des protéines ancestrales ressuscitées en laboratoire, ouvrant la voie à une meilleure compréhension des mécanismes évolutifs agissant sur les séquences biologiquesThe molecular reconstruction and resurrection of ancestral proteins is the major issue tackled in this thesis manuscript. While fossil molecular data are almost nonexistent, phylogenetic methods allow to estimate what were the most likely ancestral protein sequences along a phylogenetic tree describing the relationships between extant sequences. With these ancestral sequences, several biological hypotheses can be tested, from the evolution of protein function to the inference of ancient environments in which the ancestors were adatapted. These probabilistic estimations of ancestral sequences depend on substitution models giving the different probabilities of substitution between all pairs of amino acids. Classicaly, substitution models assume in a simplistic way that the evolutionary process remains homogeneous (constant) among sites of the multiple sequence alignment or between lineages. During the last decade, several methodological improvements were realised, with the description of substitution models allowing to account for the heterogeneity of the process among sites and in time. During my thesis, I developed new heterogeneous substitution models in Maximum Likelihood that were proved to better fit the data than any other homogeneous or heterogeneous models. I also demonstrated their better performance regarding the accuracy of ancestral sequence reconstruction. With the use of these models to reconstruct or resurrect ancestral proteins, my coworkers and I showed the adapation to temperature is a major determinant of evolutionary rates in Archaea. Furthermore, we also deciphed the nature of the phylogenetic signal informing substitution models to infer a non-parsimonious scenario for the adaptation to temperature during early Life on Earth, with a non-hyperthermophilic last universal common ancestor living at lower temperatures than its two descendants. Finally, we showed that the use of heterogeneous models allow to improve the functionality of resurrected proteins, opening the way to a better understanding of evolutionary mechanisms acting on biological sequence

    Industrialization is associated with elevated rates of horizontal gene transfer in the human microbiome

    No full text
    HGT data for the manuscript "Industrialization is associated with elevated rates of horizontal gene transfer in the human microbiome

    Data from: Adaptation to environmental temperature is a major determinant of molecular evolutionary rates in Archaea

    No full text
    Methods to infer the ancestral conditions of life are commonly based on geological and palaeontological analyses. Recently, several studies focused on the use of genomes to gain information about past ecological conditions. Several used the property that the G+C and amino-acid contents of bacterial and archaeal rDNA genes and proteins, respectively, are strongly influenced by the environmental temperature. The adaptation to optimal growth temperature (OGT) since the Last Universal Common Ancestor (LUCA) over the universal tree of life was examined and it was concluded that LUCA was likely to have been a mesophilic organism and that a parallel adaptation to high temperature occurred independently along the two lineages leading to the ancestors of Bacteria on one side and of Archaea+Eukarya on the other side. Here, we focus on Archaea to gain a precise view of the adaptation to OGT over time in this domain. It has been often proposed on the basis of indirect evidence that the last archaeal common ancestor was a hyperthermophilic organism. Moreover, many results showed the influence of environmental temperature on the evolutionary dynamics of archaeal genomes: thermophilic organisms generally display lower evolutionary rates than mesophiles. However, to our knowledge, no study tried to explain the differences of evolutionary rates for the entire archaeal domain and to investigate the evolution of substitution rates over time. A comprehensive archaeal phylogeny and a non‐homogeneous model of the molecular evolutionary process allowed us to estimate ancestral base and amino acid compositions and optimal growth temperatures at each internal node of the archaeal phylogenetic tree. The last archaeal common ancestor is predicted to have been hyperthermophilic and adaptations to cooler environments can be observed for extant mesophilic species. Furthermore, mesophilic species present both long branches and high variation of nucleotide and amino acid compositions since the last archaeal common ancestor. The increase of substitution rates observed in mesophilic lineages along all their branches can be interpreted as an ongoing adaptation to colder temperatures and to new metabolisms. We conclude that environmental temperature is a major factor that governs evolutionary rates in Archaea
    corecore