126 research outputs found

    Interannual Variability of Summertime Convective Cloudiness and Precipitation in the Central Andes Derived from ISCCP-B3 Data

    Get PDF
    The interannual variability of austral summer [December–January–February–March (DJFM)] convective ac-tivity and precipitation in the central Andes (158–308S) is investigated between 1983 and 1999 based on in situ rain gauge measurements, International Satellite Cloud Climatology Project (ISCCP) reduced radiance satellite data (the B3 dataset), and National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis data. Twice-daily ISCCP-B3 calibrated infrared data, corrected for limb-darkening effects and representing equiv-alent blackbody temperatures Tb emitted by clouds are used to derive seasonal composites of fractional cold cloud coverage F*. Comparison of in situ rain gauge measurements with F * show a good correlation when a temperature threshold Tb 5 240 K is used to derive F*. A rotated empirical orthogonal function (REOF) applied to the seasonal estimates of F * yielded three spatially separated modes of convective activity in the south, northwest, and northeast of the central Andes. Results indicate that precipitation variability in the central Andes shows less spatial coherence than previously thought, with many years showing an antiphasing of wet/dry conditions between the northern and southern part of the study area. Regression analyses confirm the crucial role of both intensity and location of upper-ai

    Impact of the global warming hiatus on Andean temperature

    Get PDF
    Abstract The recent hiatus in global warming is likely to be reflected in Andean temperature, given its close dependence on tropical Pacific sea surface temperature (SST). While recent work in the subtropical Andes has indeed documented a cooling along coastal areas, trends in the tropical Andes show continued warming. Here we analyze spatiotemporal temperature variability along the western side of the Andes with a dense station network updated to 2010 and investigate its linkages to tropical Pacific modes of variability. Results indicate that the warming in tropical latitudes has come to a halt and that the subtropical regions continue to experience cooling. Trends, however, are highly dependent on elevation. While coastal regions experience cooling, higher elevations continue to warm. The coastal cooling is consistent with the observed Pacific Decadal Oscillation (PDO) fingerprint and can be accurately simulated using a simple PDO-analog model. Much of the PDO imprint is modulated and transmitted through adjustments in coastal SST off western South America. At inland and higher-elevation locations, however, temperature trends start to diverge from this PDO-analog model in the late 1980s and have by now emerged above the 1σ model spread. Future warming at higher elevation is likely and will contribute to further vertical stratification of atmospheric temperature trends. In coastal locations, future warming or cooling will depend on the potential future intensification of the South Pacific anticyclone but also on continued temperature dependence on the state of the PDO

    Global Temperature Responses to Large Tropical Volcanic Eruptions in Paleo Data Assimilation Products and Climate Model Simulations Over the Last Millennium

    Get PDF
    Large volcanic eruptions are one of the dominant perturbations to global and regional atmospheric temperatures on timescales of years to decades. Discrepancies remain, however, in the estimated magnitude and persistence of the surface temperature cooling caused by volcanic eruptions, as characterized by paleoclimatic proxies and climate models. We investigate these discrepancies in the context of large tropical eruptions over the Last Millennium using two state-of-the-art data assimilation products, the Paleo Hydrodynamics Data Assimilation product (PHYDA) and the Last Millennium Reanalysis (LMR), and simulations from the National Center for Atmospheric Research Community Earth System Model-Last Millennium Ensemble (NCAR CESM-LME). We find that PHYDA and LMR estimate mean global and hemispheric cooling that is similar in magnitude and persistence once effects from eruptions occurring in short succession are removed. The estimates also compare well to Northern-Hemisphere reconstructions based solely or partially on tree-ring density, which have been proposed as the most accurate proxy estimates of surface cooling due to volcanism. All proxy-based estimates also agree well with the magnitude of the mean cooling simulated by the CESM-LME. Differences remain, however, in the spatial patterns of the temperature responses in the PHYDA, LMR, and the CESM-LME. The duration of cooling anomalies also persists for several years longer in the PHYDA and LMR relative to the CESM-LME. Our results demonstrate progress in resolving discrepancies between proxy- and model-based estimates of temperature responses to volcanism, but also indicate these estimates must be further reconciled to better characterize the risks of future volcanic eruptions

    Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead

    Get PDF
    Glaciers in the tropical Andes have been retreating for the past several decades, leading to a temporary increase in dry season water supply downstream. Projected future glacier shrinkage, however, will lead to a long-term reduction in dry season river discharge from glacierized catchments. This glacier retreat is closely related to the observed increase in high-elevation, surface air temperature in the region. Future projections using a simple freezing level height- equilibrium-line altitude scaling approach suggest that glaciers in the inner tropics, such as Antizana in Ecuador, may be most vulnerable to future warming while glaciers in the more arid outer tropics, such as Zongo in Bolivia, may persist, albeit in a smaller size, throughout the 21st century regardless of emission scenario. Nonetheless many uncertainties persist, most notably problems with accurate snowfall measurements in the glacier accumulation zone, uncertainties in establishing accurate thickness measurements on glaciers, unknown future changes associated with local-scale circulation and cloud cover affecting glacier energy balance, the role of aerosols and in particular black carbon deposition on Andean glaciers, and the role of groundwater and aquifers interacting with glacier meltwater.The reduction in water supply for export-oriented agriculture, mining, hydropower production and human consumption are the most commonly discussed concerns associated with glacier retreat, but many other aspects including glacial hazards, tourism and recreation, and ecosystem integrity are also affected by glacier retreat. Social and political problems surrounding water allocation for subsistence farming have led to conflicts due to lack of adequate water governance. Local water management practices in many regions reflect cultural belief systems, perceptions and spiritual values and glacier retreat in some places is seen as a threat to these local livelihoods.Comprehensive adaptation strategies, if they are to be successful, therefore need to consider science, policy, culture and practice, and involve local populations. Planning needs to be based not only on future scenarios derived from physically-based numerical models, but must also consider societal needs, economic agendas, political conflicts, socioeconomic inequality and cultural values. This review elaborates on the need for adaptation as well as the challenges and constraints many adaptation projects are faced with, and lays out future directions where opportunities exist to develop successful, culturally acceptable and sustainable adaptation strategies

    Asteroseismology of the Beta Cephei star 12 (DD) Lacertae: photometric observations, pulsational frequency analysis and mode identification

    Get PDF
    We report a multisite photometric campaign for the Beta Cephei star 12 Lacertae. 750 hours of high-quality differential photoelectric Stromgren, Johnson and Geneva time-series photometry were obtained with 9 telescopes during 190 nights. Our frequency analysis results in the detection of 23 sinusoidal signals in the light curves. Eleven of those correspond to independent pulsation modes, and the remainder are combination frequencies. We find some slow aperiodic variability such as that seemingly present in several Beta Cephei stars. We perform mode identification from our colour photometry, derive the spherical degree l for the five strongest modes unambiguously and provide constraints on l for the weaker modes. We find a mixture of modes of 0 <= l <= 4. In particular, we prove that the previously suspected rotationally split triplet within the modes of 12 Lac consists of modes of different l; their equal frequency splitting must thus be accidental. One of the periodic signals we detected in the light curves is argued to be a linearly stable mode excited to visible amplitude by nonlinear mode coupling via a 2:1 resonance. We also find a low-frequency signal in the light variations whose physical nature is unclear; it could be a parent or daughter mode resonantly coupled. The remaining combination frequencies are consistent with simple light-curve distortions. The range of excited pulsation frequencies of 12 Lac may be sufficiently large that it cannot be reproduced by standard models. We suspect that the star has a larger metal abundance in the pulsational driving zone, a hypothesis also capable of explaining the presence of Beta Cephei stars in the LMC.Comment: 12 pages, 7 figures, MNRAS, in pres

    Interhemispheric antiphasing of neotropical precipitation during the past millennium

    Get PDF
    Uncertainty about the influence of anthropogenic radiative forcing on the position and strength of convective rainfall in the Intertropical Convergence Zone (ITCZ) inhibits our ability to project future tropical hydroclimate change in a warmer world. Paleoclimatic and modeling data inform on the timescales and mechanisms of ITCZ variability; yet a comprehensive, long-term perspective remains elusive. Here, we quantify the evolution of neotropical hydroclimate over the preindustrial past millennium (850 to 1850 CE) using a synthesis of 48 paleo-records, accounting for uncertainties in paleo-archive age models. We show that an interhemispheric pattern of precipitation antiphasing occurred on multicentury timescales in response to changes in natural radiative forcing. The conventionally defined “Little Ice Age” (1450 to 1850 CE) was marked by a clear shift toward wetter conditions in the southern neotropics and a less distinct and spatiotemporally complex transition toward drier conditions in the northern neotropics. This pattern of hydroclimatic change is consistent with results from climate model simulations indicating that a relative cooling of the Northern Hemisphere caused a southward shift in the thermal equator across the Atlantic basin and a southerly displacement of the ITCZ in the tropical Americas, with volcanic forcing as the principal driver. These findings are at odds with proxy-based reconstructions of ITCZ behavior in the western Pacific basin, where changes in ITCZ width and intensity, rather than mean position, appear to have driven hydroclimate transitions over the last millennium. This reinforces the idea that ITCZ responses to external forcing are region specific, complicating projections of the tropical precipitation response to global warming

    Climate Change and Water Resources in the Tropical Andes

    No full text
    This paper describes the challenges surrounding current and future water use in the tropical Andes by first reviewing the modern and future projected hydrological cycle and anticipated impacts on environmental services provided by glaciers and wetland vegetation. The discussion then elaborates on the current tensions and conflicts surrounding water use from a social and economic perspective, and ends by focusing on the challenges ahead and looking at possible solutions for more-sustainable and equitable future water use in the region.
    • 

    corecore