40 research outputs found

    Comparing leakage currents and dark count rates in Geiger-mode avalanche photodiodes

    Get PDF
    This letter presents an experimental study of dark count rates and leakage current in Geiger-mode avalanche photodiodes (GM APD). Experimental results from circular diodes over a range of areas (20-500 mum diam), exhibit leakage current levels orders of magnitude higher than anticipated from dark count rates. Measurements of the area and peripheral components of the leakage current indicate that the majority of the current in reverse bias does not enter the high-field region of the diode, and therefore, does not contribute to the dark count rate. Extraction of the area leakage current term from large-area devices (500 mum) corresponds well with the measured dark count rates on smaller devices (20 mum). Finally, the work indicates how dark count measurements represent 10(-18) A levels of leakage current detection in GM APDs. (C) 2002 American Institute of Physics. (DOI: 10.1063/1.1483119

    Interstellar Polarization and the Position Angle Orientations of Seyfert 1 Galaxies

    Full text link
    We comment on recent spectropolarimetric studies that compare the observed polarization position angles (PAs) of Seyfert 1 galaxies near H alpha with the observed orientations of their radio source axes on the sky. For a Seyfert galaxy in which scattering occurs mainly in an equatorial scattering region, one expects the polarization PA to be parallel to the radio axis, while in a case in which light scatters predominantly in the polar regions, the H alpha polarization PA should be perpendicular to the radio axis. In practice, these correlations are difficult to establish because a Galactic interstellar polarization contribution can introduce a significant uncertainty into the polarization PA determination, even when the magnitude of interstellar polarization is small. We show how such uncertainties may affect the analysis of PA alignments and present spectropolarimetric observations of a probe star along the line of sight to the Seyfert 1 galaxy Mrk 871 that allow us to assess the intrinsic H alpha polarization and PA of Mrk 871. These results suggest that spectropolarimetric observations of such probe stars should form an integral part of future Seyfert galaxy polarization studies.Comment: 15 pages, 3 figures, accepted by MNRAS; made small corrections to the derived ISP of Mrk 871 and other minor revisions in response to the referee's recommendation

    Detecting Subtle Changes in Visuospatial Executive Function and Learning in the Amnestic Variant of Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Amnestic mild cognitive impairment (aMCI) is a putative prodromal stage of Alzheimer's disease (AD) characterized by deficits in episodic verbal memory. Our goal in the present study was to determine whether executive dysfunction may also be detectable in individuals diagnosed with aMCI. METHODS: This study used a hidden maze learning test to characterize component processes of visuospatial executive function and learning in a sample of 62 individuals with aMCI compared with 94 healthy controls. RESULTS: Relative to controls, individuals with aMCI made more exploratory/learning errors (Cohen's d = .41). Comparison of learning curves revealed that the slope between the first two of five learning trials was four times as steep for controls than for individuals with aMCI (Cohen's d = .64). Individuals with aMCI also made a significantly greater number of rule-break/error monitoring errors across learning trials (Cohen's d = .21). CONCLUSIONS: These results suggest that performance on a task of complex visuospatial executive function is compromised in individuals with aMCI, and likely explained by reductions in initial strategy formulation during early visual learning and "on-line" maintenance of task rules

    Resting-state cortical connectivity predicts motor skill acquisition

    Get PDF
    Many studies have examined brain states in an effort to predict individual differences in capacity for learning, with overall moderate results. The present study investigated how measures of cortical network function acquired at rest using dense-array EEG (256 leads) predict subsequent acquisition of a new motor skill. Brain activity was recorded in 17 healthy young subjects during three minutes of wakeful rest prior to a single motor skill training session on a digital version of the pursuit rotor task. Practice was associated with significant gains in task performance (% time on target increased from 24% to 41%, p < 0.0001). Using a partial least squares regression (PLS) model, coherence with the region of the left primary motor area (M1) in resting EEG data was a strong predictor of motor skill acquisition (R(2) = 0.81 in a leave-one-out cross-validation analysis), exceeding the information provided by baseline behavior and demographics. Within this PLS model, greater skill acquisition was predicted by higher connectivity between M1 and left parietal cortex, possibly reflecting greater capacity for visuomotor integration, and by lower connectivity between M1 and left frontal-premotor areas, possibly reflecting differences in motor planning strategies. EEG coherence, which reflects functional connectivity, predicts individual motor skill acquisition with a level of accuracy that is remarkably high compared to prior reports using EEG or fMRI measures

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    <p>During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.</p

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    International audienceFault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging‐wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP‐2). We present observational evidence for extensive fracturing and high hanging‐wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP‐2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging‐wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off‐fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation
    corecore