38 research outputs found

    Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today's state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal noise-limited stability for a 6 cm long silicon cavity cooled to 4 Kelvin, reaching 6.5×10−176.5\times10^{-17} from 0.8 to 80 seconds. We also report for the first time a clear linear dependence of the cavity frequency drift on the incident optical power. The lowest fractional frequency drift of −3×10−19-3\times10^{-19}/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−171\times10^{-17} and fractional linear drift below 1×10−191\times10^{-19}/s

    Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift

    Get PDF
    Crystalline optical cavities are the foundation of today’s state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal-noise-limited stability for a 6 cm long silicon cavity cooled to 4 K, reaching 6.5×10−17 from 0.8 s to 80 s. We also report for the first time, to the best of our knowledge, a clear linear dependence of the cavity frequency drift on incident optical power. The lowest fractional frequency drift of −3×10−19/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−17 and fractional linear drift below 1×10−19/s

    Demonstration of a timescale based on a stable optical carrier

    Get PDF
    We report on the first timescale based entirely on optical technology. Existing timescales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. We combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate 87 Sr lattice clock to form a timescale that outperforms them all. Our timescale accumulates an estimated time error of only 48 ± 94     ps over 34 days of operation. Our analysis indicates that this timescale is capable of reaching a stability below 1 × 10 − 17 after a few months of averaging, making timekeeping at the 10 − 18 level a realistic prospect

    MLSys: The New Frontier of Machine Learning Systems

    Get PDF
    Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Şantierul arheologic Suceava / Le chantier archéologique de Suceava

    No full text
    Matei Mircea D., Foit Grigore, Martinovici Trifu, Nicorescu Mara, Teodor Dan G., Constantinescu Nicolae, Andronic Alexandru. Şantierul arheologic Suceava / Le chantier archéologique de Suceava. In: Materiale şi cercetări arheologice, N°9 1970. pp. 373-399

    A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes

    No full text
    Angelova P, Vieker H, Weber N-E, et al. A Universal Scheme to Convert Aromatic Molecular Monolayers into Functional Carbon Nanomembranes. Acs Nano. 2013;7(8):6489-6497.Free-standing nanomembranes with molecular or atomic thickness are currently explored for separation technologies, electronics, and sensing. Their engineering with well-defined structural and functional properties is a challenge for materials research. Here we present a broadly applicable scheme to create mechanically stable carbon nanomembranes (CNMs) with a thickness of similar to 0.5 to similar to 3 nm. Monolayers of polyaromatic molecules (oligophenyls, hexaphenylbenzene, and polycyclic aromatic hydrocarbons) were assembled and exposed to electrons that cross-link them into CNMs; subsequent pyrolysis converts the CNMs into graphene sheets. In this transformation the thickness, porosity, and surface functionality of the nanomembranes are determined by the monolayers, and structural and functional features are passed on from the molecules through their monolayers to the CNMs and finally on to the graphene. Our procedure is scalable to large areas and allows the engineering of ultrathin nanomembranes by controlling the composition and structure of precursor molecules and their monolayers
    corecore