75 research outputs found

    Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes

    Get PDF
    A genome-wide comparison of transposable elements reveals evidence for unexpectedly high rates of horizontal transfer between three species of Drosophil

    Effectiveness of electric harps in reducing Vespa velutina predation pressure and consequences for honey bee colony development

    Get PDF
    BACKGROUND: Vespa velutinahas become a species of concern in invaded regions of Europe and Asia, due to its impacts onbiodiversity, apiculture and society. This hornet, a ferocious hunter of pollinating insects, poses a serious threat to biodiversityand pollination services. Despite ongoing efforts, its extermination in continental Europe is hampered by a lack of effective con-trol methods, thus effective mitigation measures are primary concerns. The aims of this work were: (i) to study the effects of V. velutina predating on honey bee colonies, and (ii) to assess the effectiveness of electric harps in reducing hunting pressureand predation. We assessed the predation pressure and compared honey bee colony performance, body weight of workers, andwinter survivorship for protectedversusunprotected colonies in 36 experimental hives across three apiaries. RESULTS: Electric harps protected honey bees by reducing predation pressure and therefore mitigating foraging paralysis. Consequently, foraging activity, pollen income, brood production and worker body weight were higher in protected colonies whichin turn showed greater winter survivorship than those that were unprotected, especially at sites with intermediate to highlevels of predation. CONCLUSION: The predation of V. velutina affects foraging activity, breeding, body weight and colony survivorship of Apis mellifera. Electric harps contribute significantly to mitigate the impact of this invasive hornet on apiaries; however, they should bedeployed in tandem with additional measures to preserve honey bee colony stocks, such as facilitating access to food sourcesfor colonies during the periods of highest predation pressure.Programa Interreg Atlantic Area (Fondo Europeo de Desarrollo Regional, Unión Europea) | Ref. EAPA_800/2018–Atlantic-PositiveUniversidade de Vigo/CISU

    Frequent parasitism of Apis mellifera by trypanosomatids in geographically isolated areas with restricted beekeeping movements

    Get PDF
    Trypanosomatids form a group of high prevalence protozoa that parasitise honey bees, with Lotmaria passim as the predominant species worldwide. However, the knowledge about the ecology of trypanosomatids in isolated areas is limited. The Portuguese archipelagos of Madeira and Azores provide an interesting setting to investigate these parasites because of their geographic isolation, and because they harbour honey bee populations devoid of two major enemies: Varroa destructor and Nosema ceranae. Hence, a total of 661 honey bee colonies from Madeira and the Azores were analysed using different molecular techniques, through which we found a high prevalence of trypanosomatids despite the isolation of these islands. L. passim was the predominant species and, in most colonies, was the only one found, even on islands free of V. destructor and/or N. ceranae with severe restrictions on colony movements to prevent the spread of them. However, islands with V. destructor had a significantly higher prevalence of L. passim and, conversely, islands with N. ceranae had a significantly lower prevalence of the trypanosomatid. Crithidia bombi was detected in Madeira and on three islands of the Azores, almost always coincident with L. passim. By contrast, Crithidia mellificae was not detected in any sample. A High-Throughput Sequencing analysis distinguished two main haplotypes of L. passim, which accounted for 98% of the total sequence reads. This work suggests that L. passim and C. bombi are parasites that have been associated with honey bees predating the spread of V. destructor and N. ceranae.This work was funded by the Consejería de Educación, Cultura y Deportes, of the Junta de Castilla – La Mancha (European Regional development Fund) project No. SBPLY/19/180501/000334 and through the program COMPETE 2020—POCI (Programa Operacional para a Competividade e Internacionalização) and FCT (Fundação para a Ciência e a Tecnologia) in the framework of the project BeeHappy (POCI-01-0145-FEDER-029871).info:eu-repo/semantics/publishedVersio

    Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    Get PDF
    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.This study was supported by funds from the Instituto Nacional de Investigación y Tecnología Agraria (INIA; http://www.inia.es/; grant numbers RTA2013-00042-C10-05 and 06), the Regional Government of Murcia (Fundación Séneca; http://fseneca.es/; grant number 19908/GERM/2015) and the Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA; Plan Apícola Nacional 2014; http://www.magrama.gob.es). PDR is presently a member and receives support from COST Action FA1307, Sustainable pollination in Europe: joint research on bees and other pollinators, SUPER-B (http://www.cost.eu/COST_Actions/fa/Actions/FA1307)S

    Survival of honey bees (Apis mellifera) infected with Crithidia mellificae spheroid forms (Langridge and McGhee: ATCC® 30254™) in the presence of Nosema ceranae

    Get PDF
    Crithidia mellificae, a trypanosomatid parasite of Apis mellifera, has been proposed to be one of the pathogens responsible for the serious honey bee colony losses produced worldwide in the last decade, either alone or in association with Nosema ceranae. Since this pathogenic effect contradicts the results of the experimental infections originally performed by Langridge and McGhee nearly 40 years ago, we investigated the potential linkage of this protozoan with colony decline under laboratory conditions. Nosema-free and trypanosomatid-free honey bees from three different colonies were experimentally infected with fresh C. mellificae spheroid forms (reference strain ATCC30254), with N. ceranae fresh spores and with both parasites at the same time. Replicate cages were kept at 27 °C and used to analyse survival. C. mellificae spheroid forms did not reduce significantly the survival of the worker bees (64.5% at 30 days post-infection vs. 77.8% for the uninfected bees used as controls; differences were non statistically significant) under these experimental conditions. In contrast, the cages infected with N. ceranae exhibited higher rates of mortality from the 20th day post-infection onwards, irrespective of the presence of C. mellificae, suggesting that the spheroid forms of the latter have no pathological effect on A. melliferaINIA-FEDER (RTA2013-00042-C10-06 and E-RTA2014-00003-C03)S

    Bee trypanosomatids: first steps in the analysis of the fenetic variation and population structure of Lotmaria passim, Crithidia bombi and Crithidia mellificae

    Get PDF
    Trypanosomatids are among the most prevalent parasites in bees but, despite the fact that their impact on the colonies can be quite important and that their infectivity may potentially depend on their genotypes, little is known about the population diversity of these pathogens. Here we cloned and sequenced three non-repetitive single copy loci (DNA topoisomerase II, glyceraldehyde-3-phosphate dehydrogenase and RNA polymerase II large subunit, RPB1) to produce new genetic data from Crithidia bombi, C. mellificae and Lotmaria passim isolated from honeybees and bumblebees. These were analysed by applying population genetic tools in order to quantify and compare their variability within and between species, and to obtain information on their demography and population structure. The general pattern for the three species was that they were subject to the action of purifying selection on nonsynonymous variants, the levels of within species diversity were similar irrespective of the host, there was evidence of recombination among haplotypes and they showed no haplotype structuring according to the host. C. bombi exhibited the lowest levels of synonymous variation (πS= 0.06 ± 0.04%) — and a mutation frequency distribution compatible with a population expansion after a bottleneck — that contrasted with the extensive polymorphism displayed by C. mellificae (πS= 2.24 ± 1.00 %), which likely has a more ancient origin. L. passim showed intermediate values (πS= 0.40 ± 0.28 %) and an excess of variants a low frequencies probably linked to the spread of this species to new geographical areasThis study was supported by the Ministerio de Economía y Competitividad (MINECO) (grant number CGL2012-34897), the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) - European Regional Development Fund (ERDF) (grant numbers E-RTA2014-00003-C03-01, 02 and 03), the Eva Crane Trust (grant number ECTA_20210308) and the Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia (grant of Regional Excellence19908/GERM/2015)S

    Residual tau-fluvalinate in honey bee colonies is coupled with evidence for selection for Varroa destructor resistance to pyrethroids

    Get PDF
    Producción CientíficaVarroa destructor is one of the most prevalent honey bee (Apis mellifera) pathogens worldwide. Nowadays, the main method to control this parasite involves the application of different acaricidal treatments, among which the pyrethroid tau-fluvalinate is one of the most widely used. However, the intensive and repetitive application of these chemicals generates a selective pressure that, when maintained over time, contributes to the emergence of resistant mites in the honey bee colonies. Here we analysed the presence of residual tau-fluvalinate and the patterns of genetic resistance to this acaricide in Varroa mites collected from tau-fluvalinate untreated honey bee colonies. Our results show the widespread and persistent pyrethroid contamination of beeswax and beebread in the hives, along with an excess of pyrethroid-resistant genotypes and an overall increase in the frequency of the pyrethroid-resistant allele in the mite population over time. Persistent contamination of the hives likely compromises the efficacy of tau-fluvalinate treatments and, therefore, may have serious long-term consequences for the control of varroosis.Varroa destructor is considered one of the most devastating parasites of the honey bee, Apis mellifera, and a major problem for the beekeeping industry. Currently, the main method to control Varroa mites is the application of drugs that contain different acaricides as active ingredients. The pyrethroid tau-fluvalinate is one of the acaricides most widely used in beekeeping due to its efficacy and low toxicity to bees. However, the intensive and repetitive application of this compound produces a selective pressure that, when maintained over time, contributes to the emergence of resistant mites in the honey bee colonies, compromising the acaricidal treatments efficacy. Here we studied the presence of tau-fluvalinate residues in hives and the evolution of genetic resistance to this acaricide in Varroa mites from honey bee colonies that received no pyrethroid treatment in the previous four years. Our data revealed the widespread and persistent tau-fluvalinate contamination of beeswax and beebread in hives, an overall increase of the pyrethroid resistance allele frequency and a generalized excess of resistant mites relative to Hardy–Weinberg equilibrium expectations. These results suggest that tau-fluvalinate contamination in the hives may seriously compromise the efficacy of pyrethroid-based mite control methods.Plan Nacional de Investigaciones Científicas y Técnicas e Innovación 2013-2016, Instituto Nacional de Investigación Agraria y Alimentaria y Tecnología (INIA) y Fondo Europeo de Desarrollo Regional (FEDER) - (Projets RTA2017-00004-C02-01 and RTA2017-00004-CO2-02

    Holistic screening of collapsing honey bee colonies in Spain: a case study

    Get PDF
    Background: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain. Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the causes of collapse. Results: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently, the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene, showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since 1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the latter group corresponds to a highly differentiated taxon that should be renamed accordingly. Conclusion: The results of this study demonstrate that the drivers of colony collapse may differ between geographic regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified

    Longitudinal analysis on parasite diversity in honeybee colonies: new taxa, high frequency of mixed infections and seasonal patterns of variation

    Get PDF
    To evaluate the influence that parasites have on the losses of Apis mellifera it is essential to monitor their presence in the colonies over time. Here we analysed the occurrence of nosematids, trypanosomatids and neogregarines in five homogeneous colonies for up to 21 months until they collapsed. The study, which combined the use of several molecular markers with the application of a massive parallel sequencing technology, provided valuable insights into the epidemiology of these parasites: (I) it enabled the detection of parasite species rarely reported in honeybees (Nosema thomsoni, Crithidia bombi, Crithidia acanthocephali) and the identification of two novel taxa; (II) it revealed the existence of a high rate of co-infections (80% of the samples harboured more than one parasite species); (III) it uncovered an identical pattern of seasonal variation for nosematids and trypanosomatids, that was different from that of neogregarines; (IV) it showed that there were no significant differences in the fraction of positive samples, nor in the levels of species diversity, between interior and exterior bees; and (V) it unveiled that the variation in the number of parasite species was not directly linked with the failure of the colonies
    • …
    corecore