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Abstract
Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae.
Whereas population genetics data for the latter have been released in the last few years,

such information is still missing for N. apis. Here we analyze the patterns of nucleotide poly-

morphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera
isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae
(N = 23), to provide new insights into the genetic diversity, demography and evolution of N.
apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis
and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no sub-

stantial differentiation between the genetic content of the two nuclei present in these para-

sites, and evidence for genetic recombination provides a putative mechanism for the flow of

genetic information between chromosomes. The analysis of the frequency spectrum of neu-

tral variants reveals a significant surplus of low frequency variants, particularly in N. cera-
nae, and suggests that the populations of the two pathogens are not in mutation-drift

equilibrium and that they have experienced a population expansion. Most of the variation in

both species occurs within honey bee colonies (between 62%-90% of the total genetic vari-

ance), although in N. apis there is evidence for differentiation between parasites isolated

from distinct A.mellifera lineages (20%-34% of the total variance), specifically between

those collected from lineages A and C (or M). This scenario is consistent with a long-term

host-parasite relationship and contrasts with the lack of differentiation observed among

host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this

emergent pathogen throughout the A.mellifera worldwide population is a recent event.
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Introduction
The genus Nosema (Fungi, Microsporidia, Dihaplophasea, Dissociodihaplophasida Nosemati-
dae; Nägeli, 1857) contains over eighty species [1,2] typically found in arthropods. Two species,
N. apis and N. ceranae, parasitize the Western honey bee, Apis mellifera. N. apis Zander, 1909
is a globally distributed pathogen that was identified in this host more than a hundred years
ago [3], whereas N. ceranae was described at the end of the twentieth century [4]. This latter
species, although initially discovered in the Asian honey bee Apis cerana [4], was recently
proved to infect A.mellifera [5,6], and since then it has been found worldwide in this new host
[7,8,9,10,11], as well as in several other Apis [12,13] and Bombus species [14,15]. Both patho-
gens are transmitted through the ingestion of spores during feeding, grooming and trophallaxis
[16,17]. Once in the gut, they invade the ventricular cells causing disease, but the clinical and
epidemiological characteristics of the parasitization by either species are different; the infection
by N. apis (type A nosemosis) does not usually cause the death of the colonies and is character-
ized by dysentery, general weakening of the adults, locomotion impairment and crawling [18].
These symptoms are not present in N. ceranae infections (type C nosemosis) [19], which pro-
duce alterations in the temporal polyethism, foraging activity and life span of infected bees
[20,21,22]. Although the same could also be true for N. apis [23], the higher prevalence of N.
ceranae throughout the year in temperate climates [24,25]–in contrast with that of N. apis,
which usually displays seasonal peaks [26]–, induces a chronic stress on the colony that may
eventually lead to its collapse [20,27,28]. This effect, whose potential relationship with the large
scale depopulation phenomenon is still matter of debate ([24,28], or [29,30] for a different
point of view), is much more dramatic in Mediterranean countries, especially in Spain, where
climatic conditions and/or beekeeping practices seem to increase the impact of N. ceranae on
honey bee colonies reviewed in [31].

Genetic data revealed that N. apis and N. ceranae are highly divergent at the nucleotide level
(average nonsynonymous divergence of 10%; [32]) and that there has been considerable gene
shuffling since the split from their common ancestor [33], evidencing that they are not very
close relatives within the genus Nosema [34,35].

The genetic characterization of N. ceranae populations in A.mellifera has been achieved in
the last few years by analyzing different components of the ribosomal DNA (rDNA) [36,37],
single-copy genes [32,38,39,40,41] and whole genomes [42]. The most relevant conclusions of
these studies are that i) N. ceranae isolates obtained from individual honey bees exhibit multi-
ple alleles at single copy loci [38,39], ii) most of the variation resides within honey bee colonies
[39,42], iii) there is no differentiation among geographically distant isolates [36,38,39,42], iv)
this pathogen has experienced a recent demographic expansion in A.mellifera [38,39,42], and
v) there is evidence for low, but significant, levels of recombination [36,38,40,41,42].

In contrast, there is little information about the population genetics of N. apis. Although a
few sequence data have been released in public databases, most of them remain unpublished
(e.g. PopSets 723438493, 698364701, 225055863 from GenBank) and/or involve the analysis of
rDNA [43,44,45] that harbors multiple copies in the N. apis genome [33]. These are organized
as tandemly repeated units, each of them consisting of a small (SSU) and large (LSU) subunits
separated by an internal transcribed spacer (ITS), and an intergenic spacer (IGS) [45,46] (see
[33] for a slightly different organization). The redundancy of these arrays usually promotes the
conservation of rDNA sequences through different mechanisms (concerted evolution [47],
and/or birth-and-death processes [44]) that preserve their important role in mRNA transla-
tion. However, in the case of N. apis and N. ceranae, rDNA copies are highly diverse [33,36,48]
and, although the reasons for the existence of differently expressed rRNA copies are still to be
determined [37], the presence of such heterogeneous units complicates the assessment of the
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levels of polymorphism [44,49], as within-genome heterogeneity is hard to disentangle from
between-individuals diversity. This limits the use of ribosomal loci to estimate the genome-
wide patterns of variability.

Here we report a population genetic analysis conducted to address questions that are central
to our understanding of the recent evolutionary history of N. apis, such as: what are the levels
of genetic variation of this parasite? Is there any genetic evidence for a long-term association
between N. apis and A.mellifera? Is the N. apis population panmictic or is there any sign of
geographical structure? With this aim, the sequences of three single copy genes were studied in
a collection of N. apis and N. ceranae isolates obtained from A.mellifera colonies from all over
the world. These loci had been previously studied in N. ceranae [32,39,40] and their patterns of
polymorphism used to yield new insights into this parasite’s populations. Our results, along
with these previous data, provide the first comparative analysis of the patterns of genetic varia-
tion of both pathogens in the same host species.

Material and Methods

Samples
N. apis was isolated from twenty two naturally infected A.mellifera colonies from eleven coun-
tries worldwide: Algeria, Argentina, Canada, Chile, Germany, Hungary, the Netherlands,
Poland, Slovenia, Spain, and Turkey (S1 Table). A similar number of N. ceranae isolates
(N = 23) were collected from A.mellifera colonies from 17 countries: Algeria, Argentina,
Australia, Brazil, Canada, Chile, Croatia, Greece, Hawaii (USA), Hungary, Japan, the Nether-
lands, Slovenia, Solomon Islands, Spain, Taiwan, and continental United States of America
(S2 Table).

Ethics statement
No specific permits were required for the described studies, which did not involve endangered
or protected species.

DNA extraction, PCR amplification, cloning and sequencing
DNA was extracted from homogenized pools of 15–20 honey bees from each colony. This was
carried out as in [50], using the BioSprintTM 96 DNA Blood Kit (QIAgen, Izasa, Barcelona,
Spain). The reagents used in this process were tested by PCR to check for the presence of
potential contamination with N. apis, N. ceranae or honey bee DNA in each round of extrac-
tions. The identity of Nosema species was determined by specific PCR amplification of the 16S
rDNA, as in [51]. No co-infections were detected in these samples.

Specific primers were designed with Primer Blast (http://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi?LINK_LOC=BlastHome) using sequences of each species as query
(KE647054.1: 13328–14116—locus tag NAPIS_ORF00435—for PTP2, KE647278.1: 2294–
4285—locus tag NAPIS_ORF01922—for PTP3 and DQ996230.1 for RPB1 in N. apis, and
XM_002995356.1 for RPB1 in N. ceranae, respectively). Primer pairs for amplification of
PTP2, PTP3 and RPB1 in N. apis were: PTP2 Na-F (CTGCTACAGCACCGCCATTA) and
PTP2 Na-R (TGGGGTTTAATCTTGCTTTTTCCA), PTP3 Na-F (AGACAAGGTGTTTCTC
CAAAAGA) and PTP3 Na-R (GCAAGGTTTTCTTCTGTTGCC) and RPB1 Na-F (GTTAA
GAGCAGAAGATGATCTAAC) and RPB1 Na-R (CTGATAATTTGTTTTCCTGTCCAATA),
respectively. Primer pairs to amplify RPB1 in N. ceranae were those published in [32].

PCR amplification, cloning and sequencing procedures were performed as in [39]. PCR
annealing temperatures were adjusted for each of the primer pairs. These were 59.0°C, 58.0°C
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and 56.5°C for PTP2, PTP3 and RPB1 in N. apis and 55°C for RPB1 in N. ceranae, respectively.
Each round of PCR amplification included negative and positive controls (PCR components
with no template DNA, and PCR components + DNA extracted from N. ceranae–or N. apis–
positive isolates, respectively).

Sequences were checked for accurate base calling using CodonCode Aligner (CodonCode
Corporation, Dedham, MA, USA) and aligned with MUSCLE [52] with their reference
sequences to determine the nucleotide positions at each locus. The alignments were manually
corrected with BioEdit [53] and the sequences submitted to GenBank (S1 and S2 Tables).

Apis mellifera: lineage assignment
Determination of the A.mellifera evolutionary lineage was performed by sequence analysis of
the intergenic region between the tRNAleu and the cytochrome oxidase II (cox2) gene as
described previously [54]. DNA was extracted from a pair of legs using the Chelex1 method
[55]. The intergenic tRNAleu-cox2 region was PCR-amplified in a thermocycler PTC 100 (MJ
Research) in a total volume of 12.5 μL with KapaTaq DNA Polymerase (KAPA BIOSYSTEMS),
containing 2 μL of DNA template, 200 μM total dNTP, 1 X Reaction Buffer, 0.5 U/rxn Kapa-
Taq DNA Polymerase, 1.5 mMMgCl2, 0.4 μM of each primer (E2 and H2, [56]). The thermo-
cycler program used was: 94°C (5 min); 35 cycles of a 45 s denaturation at 94°C, a 45 s
elongation at 48°C, a 60 s extension at 62°C; and a final extension step at 65°C for 20 min.
Amplicons were sequenced with the primer E2 (Secugen S.L., Madrid, Spain). Each sequence
was manually checked for base calling and a multiple sequence alignment was performed with
the MEGA program, version 6 [57]. Evolutionary lineages were determined by comparison
with sequences deposited in GenBank (lineage C: JQ977699, JF723946; lineage M: HQ337441,
KF274627; lineage A: EF033650, JQ746693).

Sequence analyses
Nucleotide diversity in N. apis and N. ceranae was estimated at synonymous and non-synony-
mous sites with DnaSP v5.10.02 [58]. Sites with alignment gaps were excluded from the analy-
ses. π [59] and θW [60] were calculated applying the Jukes-Cantor correction [61]. π, the
average number of pairwise differences between sequences, is sensitive to the frequency of
polymorphisms and complementary to the estimate of θW, which measures the levels of vari-
ability by counting the number of segregating sites, independently of their frequency, and thus
giving more weight to rare variants. The Tajima´s D test [62] compares the two statistics. If the
population is in mutation-drift equilibrium, π and θW are expected to have same value, and D
should be equal to zero. Negative D values reflect an excess of low frequency variants (greater
θW), which under neutrality can be interpreted as evidence for a recent population expansion.
According to Tajima’s considerations on the different distributions followed by D at individual
or pooled loci [62], the statistical significance of the deviation from neutral expectations for
individual genes was determined using DnaSP (which assumes a beta distribution). When sev-
eral unlinked regions of DNA were combined to describe the patterns of polymorphism of a
species (pooled loci) this significance was calculated by applying Tajima´s formulae and
assuming a normal distribution [62]. The possibility of a population expansion was further
investigated by applying the Fu’s FS [63], as implemented in DnaSP v5.10.02. Its significance
was assessed by comparing the observed values with a null distribution generated by 1,000 coa-
lescent simulations. The number of net nucleotide substitutions per site between populations,
Da [59], was also estimated with DnaSP.

The program MLHKA [64] allows to test for selection at individual loci in a multilocus
framework by comparing the relative amounts of within and between-species synonymous
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variation across unlinked loci. [65]. The patterns of diversity at the genes used in this study
were compared with those observed at other loci with similar data available (actin,Hsp70,
HSWP4, and SWP30) [32,38,39]. Genes that did not exhibit enough sequence identity
between N. apis and N. ceranae to be confidently assigned as orthologs were discarded from
the analysis (NCER_100064, NCER_100070, NCER_100533, NCER_100768, NCER_101165 and
NCER_101600; [38]), as was PTP1 [39], which is tightly linked to PTP2 [48,66]. Rates of synon-
ymous and nonsynonymous divergence between N. apis and N. ceranae sequences for these
loci were estimated using the Yang and Nielsen method [67], as implemented in the software
PAML v 4.8a [68].

Lower bounds of the recombination rate were estimated using two different statistics
under the assumption of the infinite sites model (i.e. each segregating site has mutated only
once): Rm, the minimum number of recombination events, is based on the four-gamete test
[69], which infers a recombination event if all four possible two-locus haplotypes occur in the
sample, and Rh [70], which bounds the number of recombination events by calculating the
difference between the number of haplotypes in the sample and the number of segregating
sites. Both statistics were calculated with RecMin [70] (http://www.stats.ox.ac.uk/~myers/
RecMin.html). The population scaled recombination rate (ρ) at the three loci was estimated
applying the composite-likelihood method of Hudson [71], adapted to finite-sites model (to
account for sites that might have experienced more than one mutation), as implemented in
LDhat v2.0 [72]. Since the likelihood of observing recombination is dependent on the order
of sites, the statistical significance of a non-zero rate of recombination was evaluated with
a permutation test, in which the maximum composite likelihood was calculated under ran-
dom permutation of the physical position of the variants (1000 permutations) [72]. Nosema
parasites are commonly found as single-cell diplokaryons, so that they harbor a minimum
of two haploid genomes. Thus, the number of haploid genomes is assumed to be 2 x 2Ne, and
ρ = 4Ner.

Haplotype diversity was estimated with DnaSP v5.10.02, the statistics KST
� [73] and Snn

[74], were used to investigate the population structure. Their significance was assessed using
permutation tests (1000 replicates).

An analysis of molecular variance (AMOVA) was performed with Arlequin 3.5 [75] and the
significance of covariance components was checked by applying non-parametric permutation
procedures (3000 permutations).

Haplotype networks were generated with Network 4.6.1.0 (Fluxus Technology, http://
www.fluxus-engineering.com/sharenet.htm) using the Median-Joining algorithm, which
allows for more than one different nucleotide per site. The epsilon parameter was set to 0, 10
and 20 in successive runs in order for the resulting network to include all possible shortest
trees in the resulting network. Since no significant differences were observed, only those
networks generated with epsilon = 0 are presented. The Connection Host criterion was
used as distance calculation method. The Reduced Median algorithm (with r = 2) was
applied to obtain a simplified network containing all shortest trees. All networks were
redrawn manually.

Identification of mating and meiotic genes
The identification in N. apis and N. ceranae of the components of a sex-related locus [76] and
an inventory of genes involved in meiosis [77] was performed by means of Blastp and SQR
Sequence Search (https://www.ncbi.nlm.nih.gov/Structure/seqr) using as queries protein
sequences from other microsporidia such as Encephalitozoon cuniculi, Enterocytozoon bieneusi,
Antonospora locustae and Nosema bombycis.
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Results

Genetic diversity
The genetic variability of N. apis samples was initially assessed at PTP2, PTP3 and RPB1 in
seven naturally infected A.mellifera colonies from Algeria, Argentina, Canada, Slovenia, Spain
(N = 2) and Turkey (datasetA in Table 1 and S1 Table). To increase the resolution of the analy-
sis, and given that the levels of diversity were similar for the three genes (see below), the RPB1
locus was randomly selected to enlarge the former dataset with sequences of 15 additional sam-
ples from Canada (N = 2), Chile (N = 2), Germany (N = 3), Hungary, Netherlands (N = 2),
Poland (N = 3), Slovenia (N = 2), (datasetA + B in Table 1 and S1 Table).

The three genes displayed similar levels of synonymous variation in N. apis (pooled πS val-
ues of 1.17%, 1.27% and 1.50%, for PTP2, PTP3 and RPB1A, respectively; these values were
estimated by pooling all the sequences of each locus). The enlarged RPB1 dataset (RPB1A+B)
produced comparable results (πS = 1.68%) and was used hereafter. It is interesting to note that
these pooled values are twice the observed average diversity across the seven samples (0.80%,
0.85% and 0.82% for PTP2, PTP3 and RPB1A, respectively). This discrepancy could reflect
some level of differentiation among isolates and was further investigated in the “Population
structure” section below.

The patterns of variation at these loci were also studied in N. ceranae (Table 2 and S2
Table). The pooled πS values for PTP2, PTP3 and RPB1 were 1.00%, 0.85% and 1.58%, respec-
tively and, in contrast to what was observed in N. apis, these estimates were very similar to the
average diversities across samples (0.95%, 0.82% and 1.42%, for the same loci, respectively).

In both species the levels of polymorphism at nonsynonymous positions were much lower
than those observed at synonymous sites (Tables 1 and 2) and θW estimates were usually higher
than those of π (resulting in pooled negative Tajima’s D values, especially in N. ceranae).

To verify if the observed patterns diversity and divergence at these three genes departed sig-
nificantly from those of other genomic loci with available population data (actin, Hsp70,
HSWP4, and SWP30) we performed a maximum likelihood HKA test [64]. Actin and Hsp70
displayed lower diversity relative to their divergence levels (likelihood ratio test, LRT = 18.5,
P< 0.001). No significant deviations were detected at any the other five loci. In addition, the
ratio of nonsynonymous to synonymous divergence (dN/dS) was below unity for the seven loci,
ranging from 0.02–0.04 for actin,Hsp70 and RPB1 to 0.21 for SPW30 and HSPW4 (S3 Table).

Considering the evidence for a recent population expansion in N. ceranae [32,38,39,42], we
examined this possibility in N. apis by applying two alternative tests: Tajima’s D [62] and Fu’s
FS [63]. The former test can be used to compare the frequency spectrum of variants with neu-
tral expectations, and revealed an excess of low frequency synonymous variants in N. apis.
Although this deviation was not significant at individual loci (Table 1), it was significant when
data from PTP2, PTP3 and RPB1 were combined (DS = -1.82, P = 0.034). Similar results were
obtained in N. ceranae, where the combined data revealed a significant excess of low frequency
synonymous variants (DS = -2.93, P< 0.002). The FS test [63] provided additional evidence for
a significant excess of haplotypes in N. apis PTP2 and RPB1 genes, as compared with neutral
expectations (Table 3). N. ceranae sequences obtained from A.mellifera displayed a similar pat-
tern (Table 3).

Given the possibility that the N. apis population was subdivided in two demes (see the “Pop-
ulation structure” section below), one in lineage A honey bees (from Africa and the Iberian
Peninsula) and another one in the European honey bee lineages C and M, the D and FS statis-
tics were estimated separately in both groups. Tajima’s D for lineage C isolates was significant
both at synonymous and nonsynonymous sites (-2.18, P< 0.015 and -3.30, P< 0.0001, respec-
tively), but no significant skew was observed at synonymous sites among isolates collected
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from honey bees of lineages A or M (DS = -0.19 and 1.83, ns; respectively.). The FS test pro-
duced a similar scenario (Table 3).

Recombination
The estimate of the population scaled recombination rate (ρ) was significantly greater that zero
at PTP2 and RPB1 in N. apis (Table 4) and several recombination events were detected at these
two loci (Rm = 2 and 6, Rh = 2 and 14, respectively).

The outcome of these tests did not change after removing singleton mutations, which usu-
ally contain little information and could cause interferences in the assessment of recombina-
tion. In addition, the four-allele combinations expected after a recombination event were
found both in individual samples (e.g. AT, TT, AC and TC at positions 276 and 453 of PTP2 in

Table 4. Statistics used to detect recombination inN. apis.

Dataset Locus N Rm Rh ρ P

N. apis PTP2 63 2 2 36 *

PTP3 50 0 0 2 ns

RPB1 208 6 14 11 ***

N. ceranae PTP2 a 169 5 10 68 ns

PTP3 a 194 3 6 61 *

RPB1 b 196 6 12 14 *

N, number of cloned sequences; Rm, minimum number of recombination events [69]; Rh: lower bound on

the number of recombination events [70] (http://www.stats.ox.ac.uk/~myers/RecMin.html); ρ, estimate of the

population scaled recombination rate; P, probability of Lkmax � estimated in a likelihood permutation-

based test as implemented in LDhat [72]; ns, non-significant,

*, P < 0.05 and ***, P < 0.001;
a, sequence data from [39];
b, sequence data for isolates 440, 1251 and 1324 from [32];

the remaining ones are from this work.

doi:10.1371/journal.pone.0145609.t004

Table 3. FS test for detecting population expansion.

Fs

Dataset PTP2 PTP3 RPB1

N. apis -18.66 *** -8.17 ns -87.22 ***

Lineage A -1.52 ns 0.46 ns -3.54 *

Lineage C -13.24 *** -5.70 ** -34.15 ***

Lineage M -0.77 ns

N. ceranae a, b -34.35 *** -120.89 *** -77.55 ***

Fs: Fu's Fs [63]; The significance was evaluated by comparing the values of the statistic, and the observed

levels of recombination per gene, with a null distribution generated by 1,000 coalescent simulations (ns,

non-significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001);
a, sequence data for PTP2 and PTP3 from [39];
b, sequence data for isolates 440, 1251 and 1324 (RPB1) from [32];

the remaining ones are from this work. Lineages A, C and M indicate the evolutionary lineage of the honey

bee colonies where the isolates come from (isolate 410 was excluded from this analysis).

doi:10.1371/journal.pone.0145609.t003
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sample 854 –haplotypes 1, 15, 23 and 24, respectively–; S4 Table) and in samples from different
populations (e.g. CC, CT, TC and TT at positions 771 and 963 of RPB1A+B; S7 Table), further
supporting the existence of low, although statistically significant, levels of recombination in N.
apis. Likewise, evidence for recombination was found in N. ceranae, although in this case it
only reached statistical significance for PTP3 and RPB1 (Table 4).

Sex and meiotic loci
A Blastp analysis of the genomes of N. apis and N. ceranae revealed the presence of several
components of a sex-related locus [78] that encode a triose phosphate transporter (TPT), a
high-mobility group (HMG), and an RNA helicase (with accession numbers EQB61312,
EQB61310, EQB60627 and KKO76186, KKO76188, KKO75161, respectively). In both species
TPT andHMG were syntenic and harbored an additional predicted ORF between them,
whereas the RNA helicase was unlinked to the former.

These genomes also contained meiotic genes, although not all of them presented orthologs
in both species (S8 Table). However, it must be noted that these results should be taken with
caution due to the difficulty of distinguishing orthologs encoding different members of gene
families (i.e. Smc1 and Smc4 in N. ceranae; S8 Table).

Population structure
N. apis exhibited high levels of haplotype diversity at the three loci under study (Hd = 0.79–
0.91). To explore the distribution of the haplotypes among samples these were plotted into net-
works (Fig 1), revealing the following patterns: (i) all loci presented a reduced number of com-
mon haplotypes (e.g. h1 in PTP2 and in PTP3, and h2 and h5 in RPB1); (ii) most other
haplotypes differed from these by a reduced number of substitutions (usually one or two); and
(iii), there was a hinted association among haplotypes obtained from Spanish and Algerian
samples. For example, PTP2 haplotypes h15, h16, h17 were shared by the three samples from
these two countries (Fig 1A), and most other closely linked haplotypes (e.g. h14, h18, h19, h21,
h22 and h24) were found in either of them. A similar effect was observed for PTP3 haplotypes
h3 and h13 (Fig 1B), and h2 of RPB1 (Fig 1C). This raised the possibility of a structuring of the
parasite and host populations, which was not apparent in N. ceranae networks (S1 Fig), and it
was further explored by determining the evolutionary lineage of all sampled honey bee colonies
and by quantifying the relative contribution of three covariance components to the observed
parasite haplotype diversity: (i) covariance within isolates (i.e., within honey bee colonies), (ii)
among isolates obtained from honey bees of the same evolutionary lineage, and (iii) among
host evolutionary lineages. Most N. apis isolates were collected from A.mellifera colonies of
lineage C, except isolates 399 and 854 (from Spain and Algeria) which were of lineage A, and
isolates 382 (Canada) and 411 (Chile) which belonged to lineage M (S1 Table). A third isolate
from Spain, 410, displayed mixed results, with evidence for the presence of honey bees of both
lineages A and M, probably due to drifting workers and the existence of colonies of both evolu-
tionary lineages in the same apiary (S1 Table).

The analysis of molecular variance revealed a structured N. apis population, where
between 20 and 34% of the total variance at the three loci corresponded to differences among
host-lineages (P< 0.05, in permutation tests; Table 5). These results held irrespective of
whether sample 410 was considered as belonging to lineage A or M. Differences among hap-
lotypes of the same isolate accounted for the best part of the variance (between 62 and 70%),
and differences among isolates of the same lineage represented�11% of the variance. In N.
ceranae the differentiation of haplotypes within isolates was even greater (between 91 and
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99%) but, contrastingly, the differences among host-lineages were not significant as they rep-
resented just a tiny fraction of the observed variance (< 4%, Table 5).

A pairwise analysis of N. apis differentiation between host lineages uncovered that most var-
iation occurred between lineage A and the other two lineages, which were otherwise indistin-
guishable (Table 6). KST

�, which measures the average pairwise differences within populations
with respect to the total, revealed significant differentiation between N. apis sequences obtained
from A.mellifera colonies of lineages A and C (KST

� between 0.09 and 0.25, P< 0.001, Table 6)
or between A and M (KST

� = 0.30, P< 0.001). Similarly, Snn, which estimates how often related
sequences are found in the same population, reached significant values between group A and C
(Snn = 0.82–0.93, P< 0.001) and between A and M (Snn = 1.00, P< 0.001). Both tests failed to
detect significant differences between sequences obtained from lineages C and M.

The divergence between two populations is a direct function of the mutation rate times
twice the number of generations since their split. Considering that: (i) the net divergence (Da)

Fig 1. Median-joining haplotype network for threeN. apis loci according to their geographical origin and A.mellifera lineage: PTP2 (A), PTP3 (B)
and RPB1 (C). Haplotypes are depicted by circles, the width being proportional to their frequencies. Color codes are as follows; blue: lineage A (light blue:
isolate 854 (Algeria); dark blue: isolate 399 (Spain)); yellow: lineages A/M (isolate 410 (Spain)); greyscale: lineage C (black: isolate 204 (Argentina); dark
grey: isolate 381 (Canada); light grey: isolate 52 (Slovenia); white: isolate 174 (Turkey)); red dots represent median vectors (hypothesized haplotypes
required to connect existing sequences within the network with maximum parsimony).

doi:10.1371/journal.pone.0145609.g001
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between N. apis from lineage A and C/M colonies is 0.002. (ii) The number of spores can dou-
ble as fast as every 24 hours (e.g. [79,80]). (iii) The substitution rate in these pathogens is about
two times faster than that observed in other fungi (as estimated for Encephalitozoon cuniculi
[81]), and that (iv) the per site mutation rates in fungi is of the order of 7.2 x 10−11 for Neuros-
pora crassa or 2.2 x 10−10 for Saccharomyces cerevisiae [82], the split between the two parasite
populations can be dated between 6,200 and 19,000 years ago.

Discussion
Here we report a population genetic analysis of N. apis based on the study of the patterns of
diversity of three unlinked single copy genes: PTP2 and PTP3, which encode polar tube pro-
teins (reviewed in [83]), and the largest subunit of the RNA polymerase II (RPB1), a house-
keeping gene that has been frequently used as phylogenetic marker in microsporidian species
[84,85]. The levels of synonymous variation at these unlinked coding genes should be a good
proxy for the extant neutral variation of the species [86]. The fact that they are single copy
markers makes them a preferred choice than the commonly used ribosomal loci, as substantial
levels of genetic variation and recombination between paralogous rDNA copies have been pre-
viously reported in microsporidia [36]. So far only Ironside [44] has published diversity data
for a single copy locus (RPB1) in N. apis.

Table 5. Analysis of molecular variance (AMOVA) inN. apis haplotypes according to A.mellifera
lineages.

Dataset Locus Source of variation d.f. SS VC % var P

N. apis PTP2 Among lineages 1 17.2 0.51 32.6 *

Among isolates within lineages 5 6.1 0.02 1.3 ns

Within isolates 56 58.7 1.05 66.1 ***

PTP3 Among lineages 1 13.9 0.50 33.8 *

Among isolates within lineages 5 6.8 0.07 4.6 *

Within isolates 43 38.9 0.90 61.6 ***

RPB1 Among lineages 2 54.3 0.56 19.6 **

Among isolates within lineages 19 94.1 0.32 10.8 ***

Within isolates 186 374.3 2.01 69.6 ***

N. ceranae PTP2 a Among lineages 2 6.0 0.04 3.5 *

Among isolates within lineages 17 20.5 0.01 0.9 ns

Within isolates 149 166.3 1.12 95.6 ns

PTP3 a Among lineages 2 242.1 -13.96 -2.2 ns

Among isolates within lineages 17 14014.6 20.29 3.2 ns

Within isolates 174 109558.1 629.64 99.0 ns

RPB1 b Among lineages 2 10.0 0.04 1.9 ns

Among isolates within lineages 20 63.9 0.14 6.7 *

Within isolates 173 339.7 1.96 91.4 **

a, Sequence data from [39];
b, sequence data for isolates 440, 1251 and 1324 from [32];

the remaining ones are from this work; isolate 410 was considered as if sampled from a lineage A honey

bee colony (see text); d.f., degrees of freedom; SS, sum of squares; VC, variance components; % var,

percentage of variation; p, probability of a random variance component value � observed value, in 3024

permutations;

*, P < 0.05; **, P < 0.01 and ***, P < 0.001; ns, non-significant.

doi:10.1371/journal.pone.0145609.t005
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The three loci analyzed displayed similar average levels of synonymous diversity (πS), about
1% (Table 1), analogous to what was found for these and other loci in N. ceranae [32,38,39,41],
and somewhat higher than those estimated for RPB1 (0.41%) in cloned sequences from a single
isolate of N. apis [44]. In terms of diversity at all sites N. ceranae and N. apis displayed values of
the order of 0.40%, which are lower than those described in N. bombycis (1.83%, [44]), but
higher than those of other microsporidia of the genus Hamiltosporidium (between 0.06% and
0.28%, [87]).

Although it has been postulated that the polar tube proteins could be factors of virulence
and thus subject to adaptive selection [88], the MLHKA test revealed that the relative levels of
diversity and divergence of the PTP loci do not differ from those observed at three other
unlinked loci (including a housekeeping gene, RPB1), which suggests that they evolve under
the effect of similar evolutionary forces. Consistently low dN/dS values can be reconciled with a
predominant effect of purifying selection over the seven loci. Although the large synonymous
divergence between these species means that these results should be taken with caution, the
fact that it applies to all loci supports that the genes used in the current study are a good proxy
of the patterns of variation across the parasites’ genome.

The detection of substantially lower variation (πA) coupled with significantly negative Taji-
ma’s DA values at nonsynonymous sites at the three loci in both species indicate that amino
acid replacement variants are readily removed from the populations, which reflects that these
loci are likely to be functional and subject to purifying selection, as previously suggested in N.
apis [44] and N. ceranae [32,36,38,39,44] for these and other genes. This fits well with the find-
ing of just 29 putative pseudogenes in the genome of N. ceranae [42], which indicates that the
majority of coding sequences retained in these reduced genomes [33,48] are essential for the
survival of these parasites. The relatively lower variability at actin andHsp70 can probably be

Table 6. Analysis of population differentiation inN. apis according to A.mellifera lineages.

Dataset Locus Host Lineages KST* P Snn P

N. apis PTP2 A & C 0.16 *** 0.82 ***

PTP3 A & C 0.25 *** 0.95 ***

RPB1 A & C 0.09 *** 0.93 ***

A & M 0.30 *** 1.00 ***

C & M 0.00 ns 0.81 ns

N. ceranae PTP2 a A & C 0,02 ** 0,69 *

A & M 0,02 * 0,55 ns

C & M 0,00 ns 0,69 ns

PTP3 a A & C 0,00 ns 0,67 *

A & M 0,01 * 0,61 **

C & M 0,00 ns 0,73 **

RPB1 b A & C 0.02 * 0.68 ns

A & M 0.00 ns 0.54 ns

C & M 0.00 ns 0.76 ns

a, sequence data from [39];
b, sequence data for isolates 440, 1251 and 1324 from [32];

the remaining ones are from this work; isolate 410 was excluded; KST* [73], estimates the amount of

within-deme nucleotide diversity relative to the overall diversity; Snn [74], measures how often related

sequences are found in the same deme; P, significance in permutation tests: ns, non-significant;

*, P < 0.05; **, P < 0.01; ***, P < 0.001.

doi:10.1371/journal.pone.0145609.t006
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attributed to the effect of negative selection at linked deleterious sites (background selection) at
these loci [89], which is consistent with the strong purifying selection—low dN/dS values—
observed in these highly conserved genes [90,91] and the low recombination rates reported for
these parasites [40] (see below).

The results of the Tajima´s D test at silent sites revealed an overall excess of low frequency
variants in the two parasite species (Tables 1 and 2). Although some of these could correspond
to nucleotide misincorporations introduced during the PCR process (despite the use of a
high-fidelity enzyme blend), previous assays using either invariant DNA templates [38,39] or
single DNA molecules [40], confirmed that the vast majority of the mutations detected in N.
ceranae were actually present in the sample mixture, and that no error-prone bias was brought
throughout the procedure. The same pattern was also observed at the genomic level [42], so
there are no reasons to think that this would be different in N. apis.

All isolates presented substantial levels of nucleotide diversity (Tables 1 and 2). In fact,
many of them harbored various distinct haplotypes, sometimes as many as nine (e.g. S7 Table).
Given that the three genes are present as a single copy in the genome of both parasites, there
are two possible and non-mutually exclusive explanations for the observed within-isolate varia-
tion: one is to assume that the two nuclei present in each cell are diploid, as it has been recently
proposed for N. ceranae [42], so that they can harbor up to four different haplotypes for each
loci, and the other is the existence of genetic heterogeneity among parasites in each host colony
(mixed infections) [32,39,41].

At any rate, the accumulation of alleles at low frequencies observed in these two species is
compatible with a demographic growth, in which most mutations present in the expanding
populations have a recent origin and, therefore, are rare [92]. The greater DS value obtained for
N. ceranae in the combined sample (DS = -2.93, P< 0.002), suggests that the expansion of this
population might have taken place more recently or it has been more accentuated than that
experienced by N. apis (DS = -1.82, P< 0.034). This would agree with its recent jump to A.mel-
lifera and spread throughout the worldwide distribution range of its new host [32,38,39,41,42].

A.mellifera originated between 6 and 8 million years ago somewhere in Asia, where all
other species of the genus are confined, and from where it expanded to its historical geographic
distribution range across sub-Saharan Africa, Europe andWestern Asia [93,94]. The species
now comprises several locally adapted and anatomically distinct subspecies, which split
between 0.3 and one million years ago and can be clustered into four major groups: lineage A,
includes subspecies that can be found in Africa and the Iberian Peninsula; lineage M is distrib-
uted along Western and Northern Europe; lineage C, in South Eastern Europe, and lineage O,
in the Middle East and Western Asia [93,94]. Our results suggest that between 20% and 34% of
the genetic variance of the N. apis population corresponds to differences between samples col-
lected from honey bee colonies of different lineages (Table 5). It should be noted that the sam-
pling scheme might influence the observed frequency spectra of variants, as the retrieval of
alleles from distant locations of a structured population is likely to cause departures from neu-
tral expectations assuming panmixia. The reduced between-sample variation in N. ceranae
means that this effect is unlikely in this species, but the evidence for genetic differentiation
between N. apis collected from different host lineages (lineage A vs. C or M) suggests that the
assumed panmixia might not be met. The separate analysis of the parasite subpopulations
revealed that only those isolated from European honey bees of lineage C depart from muta-
tion-drift equilibrium.

Remarkably, the observed structure of the parasite population does not match that of the
host: lineages C and M display the highest differentiation amongst the four A.mellifera lineages
[93,94]. In contrast, N. apis isolates from these lineages are genetically indistinguishable. This
lack of a full correspondence between the structures of parasite and host populations suggests
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that they only share a fraction of their demographic history. Indeed, the split of the N. apis pop-
ulations retrieved from honey bee lineages A and C (or M) was dated between 6,200 and
19,000 years ago, that is just after the Last Glacial Maximum, about 20,000 years ago [93].
Thus, a reduction of the parasite’s geographic distribution range during the last glacial period
might have prompted the isolation of the two populations. Contrastingly, the absence of
genetic differentiation between the parasites from lineages C and M suggests that this popula-
tion has spread across Europe recently (which is also consistent with the results of the Tajima´s
D and Fs tests), and much later than the honey bees did. This expansion might have been asso-
ciated with the practice of beekeeping by humans, whose origin has been traced to the Middle
East and Egypt about five thousand years ago [95], and also with the human-driven coloniza-
tion by A.mellifera of the NewWorld, East Asia and Oceania in the last few centuries [94,96].

Evidence for low levels of recombination from nucleotide variation data had been previously
reported [32,36,38,39,41,42], and further supported by Single Genome Amplification (SGA)
analysis, in N. ceranae [40]. This new evidence for a second Nosema species, suggests that
recombination might be a common feature of the genus. Genetic exchange between chromo-
somes is crucial in the evolution of organisms, and its detection has important consequences
since it can generate new genetic combinations that result in individuals better adapted to con-
front novel environments or hosts.

If exclusively clonal reproduction is assumed, high levels of genetic differentiation would be
expected between homologous sequences in the two nuclei of each individual (an adaptation of
the Meselson effect for a diplokaryon), as observed in the asexual microsporidianHamiltospor-
idium tvarminnensis [87]. But the absence of genetic structuration of the haplotypes retrieved
in each colony, along with the observed neutral diversity within samples and the evidence for
genetic recombination, suggest that there might exist mechanisms for occasional genetic flow
between the nuclei. Whether this exchange takes place between nuclei of the same cell or
between those of different cells during the multinucleated stages of the merogonia [97] remains
to be determined.

Genetic exchange can occur during meiosis in sexual stages of the life cycle but also during
parasexual processes such as mitotic crossover, non-homologous recombination and gene con-
version. Although both mechanisms have been proposed in microsporidians (e.g.Encephalito-
zoon cuniculi [98],Hamiltosporidium magnivora [87], Nematocida [99] or Nosema spp.
[36,44,100]), their occurrence and frequency are still a matter of debate as, in absence of
cytological observation, the outcomes of these processes are difficult to distinguish [101,102].
The finding of a putative sex-related locus in N. ceranae and in N. apis goes in line with similar
evidence in other microsporidians [76,87,99,103], but it should not be taken as a definite proof
of sexual reproduction, which would require the presence of idiomorphs of this locus in differ-
ent isolates and their expression during the mating phase [76]. The same could be said regard-
ing the existence of core meiotic genes in these genomes [76,99,103,104] whose detection,
although suggestive that meiosis may occur, does not ensure their functionality during this
process [103].

The genetic diversity patterns at the three loci analyzed in this study suggest that N. apis and
N. ceranae have experienced different recent evolutionary histories and provide new data on
the relationship between these parasites and the honey bees that host them. In addition, they
extend the evidence for genetic recombination to a second species of the genus, further sup-
porting the idea that mechanisms of genetic exchange between chromosomes play an impor-
tant role in modeling the genetic configuration of these organisms. However, further studies
are needed in order to determine the extent to which the observed patterns extend to other
parts of these species’ genomes, to elucidate the molecular mechanisms responsible for the
observed recombination and whether or not it implies sexual reproduction.
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Supporting Information
S1 Fig. Median-joining haplotype network for three N. ceranae loci according to their A.
mellifera lineage: PTP2 (A), PTP3 (B) and RPB1 (C). Haplotypes are depicted by circles, the
width being proportional to their frequencies (only shared haplotypes are named). Color
codes are as follows; blue: lineage A (isolates 839 (Algeria), 57 and 253 (Spain), 169 (Brazil));
yellow: lineage M (isolates 912 (Spain), 526 (Netherlands), 1251 (Hawaii)); grey: lineage C
(isolates 1244 (Argentina), 3 and 4 (Australia), 376 and 377 (Canada), 440 (Hungary), 531
(Slovenia), 911 (Taiwan), 1175 (Croatia), 1299 (Greece), 1319 and 1324 (Hawaii), 1610
(USA), 2032 (Solomon Islands), 1994 (Chile), KI (Japan)); red dots represent median vectors
(hypothesized haplotypes required to connect existing sequences within the network with
maximum parsimony).
(TIF)

S1 Table. Origin and accession numbers of N. apis sequences obtained from A.mellifera
honey bees.
(XLS)

S2 Table. Origin and accession numbers of N. ceranae sequences obtained from A.mellifera
honey bees.
(XLS)

S3 Table. Ratio of nonsynonymous to synonymous divergence (dN/dS) between N. apis and
N. ceranae (Yang and Nielsen method).
(XLS)

S4 Table. Number of occurrences and nucleotide variants of PTP2A haplotypes from N.
apis.
(XLS)

S5 Table. Number of occurrences and nucleotide variants of PTP3A haplotypes from N.
apis.
(XLS)

S6 Table. Number of occurrences and nucleotide variants of RPB1A haplotypes from N.
apis.
(XLS)

S7 Table. Number of occurrences and nucleotide variants of RPB1A+B haplotypes from N.
apis.
(XLS)

S8 Table. Meiotic genes in different microsporidian species.
(XLS)
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