68 research outputs found
Amide-Directed Formation of Five-Coordinate Osmium Alkylidenes from Alkynes
The amide-directed synthesis of five-coordinate osmium alkylidene derivatives from alkynes is reported. These types of complexes, which have been elusive until now because of the tendency of osmium to give hydride alkylidyne species, are prepared by reaction of the dihydride OsH2Cl2(PiPr3)2 (1) with terminal alkynes containing a distal amide group. Complex 1 reacts with N-phenylhex-5-ynamide and N-phenylhepta-6-ynamide to give OsCl2{=C(CH3)(CH2)nNH(CO)Ph}(PiPr3)2 (n = 3 (2), 4 (3)). The relative position of carbonyl and NH groups in the organic substrates has no influence on the reaction. Thus, treatment of 1 with N-(pent-4-yn-1-yl)benzamide leads to OsCl2{=C(CH3)(CH2)3NHC(O)Ph}(PiPr3)2 (4). The new compounds are intermediate species in the cleavage of the C-C triple bond of the alkynes. Under mild conditions, they undergo the rupture of the Ca-CH3 bond of the alkylidene, which comes from the alkyne triple bond, to afford six-coordinate hydride-alkylidyne derivatives. In dichloromethane, complex 2 gives a 10:7 mixture of OsHCl2{=C(CH2)3C(O)NHPh}(PiPr3)2 (5) and OsHCl2{=CCH(CH3)(CH2)2C(O)NHPh}(PiPr3)2 (6). The first complex contains a linear separation between the alkylidyne Ca atom and the amide group, whereas the spacer is branched in the second complex. In contrast to the case for 2, complex 4 selectively affords OsHCl2{=C(CH2)3NHC(O)Ph}(PiPr3)2 (7). In spite of their instability, these compounds give the alkylidene-allene metathesis, being a useful entry to five-coordinate vinylidene complexes, including the dicarbon-disubstituted OsCl2(=C=CMe2)(PiPr3)2 (8) and the monosubstituted OsCl2(=C=CHCy)(PiPr3)2 (9)
Rhodium(III)-Catalyzed Dearomatizing (3+2) Annulation of 2-Alkenylphenols and Alkynes
Appropriately substituted 2-alkenylphenols undergo a mild formal [3C+2C] cycloaddition with alkynes when treated with a Rh(III) catalyst and an oxidant. The reaction, which involves the cleavage of the terminal CâH bond of the alkenyl moiety and the dearomatization of the phenol ring, provides a versatile and efficient approach to highly appealing spirocyclic skeletons and occurs with high selectivityWe thank the financial support provided by the Spanish Grants SAF2010-20822-C02 and CSD2007-00006 Consolider Ingenio 2010, the Xunta de Galicia Grants GR2013-041 and EM2013/036, the ERDF, and the European Research Council (Advanced Grant No. 340055). M.G. thanks Xunta de Galicia for a Parga Pondal contractS
Determinants of reef fish assemblages in tropical Oceanic islands
Diversity patterns are determined by biogeographic, energetic, and anthropogenic factors, yet few studies have combined them into a largeâscale framework in order to decouple and compare their relative effects on fish faunas. Using an empirical dataset derived from 1527 underwater visual censuses (UVC) at 18 oceanic islands (five different marine provinces), we determined the relative influence of such factors on reef fish species richness, functional dispersion, density and biomass estimated from each UVC unit. Species richness presented low variation but was high at large island sites. High functional dispersion, density, and biomass were found at islands with large local species pool and distance from nearest reef. Primary productivity positively affected fish richness, density and biomass confirming that more productive areas support larger populations, and higher biomass and richness on oceanic islands. Islands densely populated by humans had lower fish species richness and biomass reflecting anthropogenic effects. Species richness, functional dispersion, and biomass were positively related to distance from the mainland. Overall, species richness and fish density were mainly influenced by biogeographical and energetic factors, whereas functional dispersion and biomass were strongly influenced by anthropogenic factors. Our results extend previous hypotheses for different assemblage metrics estimated from empirical data and confirm the negative impact of humans on fish assemblages, highlighting the need for conservation of oceanic islands.UCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de InvestigaciĂłn en Ciencias del Mar y LimnologĂa (CIMAR
Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes
Copyright: © 2011 Mora et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas
High Levels of Diversity Uncovered in a Widespread Nominal Taxon: Continental Phylogeography of the Neotropical Tree Frog
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered
Ecuadorian Migration in Amsterdam and Madrid: The Structural Contexts
AbstractThe scope of this chapter is to outline the main characteristics of the two contexts that were the scenario of the phenomenon that is the object of this book. The analysis will centre on those structural features of the cities of Amsterdam and Madrid and, more in general, of the Netherlands and Spain, that may have had an influence on the experience of Ecuadorian irregular migrants
Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine
Bioorthogonal
chemistry has become one of the main driving forces
in current chemical biology, inspiring the search for novel biocompatible
chemospecific reactions for the past decade. Alongside the well-established
labeling strategies that originated the bioorthogonal paradigm, we
have recently proposed the use of heterogeneous palladium chemistry
and bioorthogonal Pd<sup>0</sup>-labile prodrugs to develop spatially
targeted therapies. Herein, we report the generation of biologically
inert precursors of cytotoxic gemcitabine by introducing Pd<sup>0</sup>-cleavable groups in positions that are mechanistically relevant
for gemcitabineâs pharmacological activity. Cell viability
studies in pancreatic cancer cells showed that carbamate functionalization
of the 4-amino group of gemcitabine significantly reduced (>23-fold)
the prodrugsâ cytotoxicity. The <i>N</i>-propargyloxycarbonyl
(<i>N</i>-Poc) promoiety displayed the highest sensitivity
to heterogeneous palladium catalysis under biocompatible conditions,
with a reaction half-life of less than 6 h. Zebrafish studies with
allyl, propargyl, and benzyl carbamate-protected rhodamines confirmed <i>N</i>-Poc as the most suitable masking group for implementing <i>in vivo</i> bioorthogonal organometallic chemistry
The Study of Irregular Migration
AbstractThe study of irregular migration as a specific social phenomenon took off during the 70s in the US. Since then, the academic interest has continually grown and spread, first to Europe and, in the last years, to other regions worldwide. This interest can certainly be related to the increasing attention paid to the study of migrations more in general (Castles & Miller, 1993). The trend can be linked to those broad and complex social and economic changes, often subsumed under the concept of globalization. The specific focus on irregular migration, though gaining momentum throughout the 1980s, reached preeminent attention in the 1990s. On both sides of the Atlantic, the explosion of the so-called "migration crisis" (Zolberg & Benda, 2001) and the emergence of irregular migration as a widespread social fact raised the attention of public opinion and academics alike. Moreover, in recent years, what seemed at first to be an issue concerning only the high-income regions of the planet, now involves also medium and low-income ones, making irregular migration a truly global structural phenomenon (Cvajner & Sciortino, 2010a; DĂŒvell, 2006)
- âŠ