599 research outputs found

    Oral Anticoagulant Therapy Prescription in Patients With Atrial Fibrillation Across the Spectrum of Stroke Risk: Insights From the NCDR PINNACLE Registry

    Get PDF
    IMPORTANCE: Patients with atrial fibrillation (AF) are at a proportionally higher risk of stroke based on accumulation of well-defined risk factors. OBJECTIVE: To examine the extent to which prescription of an oral anticoagulant (OAC) in US cardiology practices increases as the number of stroke risk factors increases. DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional registry study of outpatients with AF enrolled in the American College of Cardiology National Cardiovascular Data Registry's PINNACLE (Practice Innovation and Clinical Excellence) Registry between January 1, 2008, and December 30, 2012. As a measure of stroke risk, we calculated the CHADS2 score and the CHA2DS2-VASc score for all patients. Using multinomial logistic regression models adjusted for patient, physician, and practice characteristics, we examined the association between increased stroke risk score and prescription of an OAC. MAIN OUTCOMES AND MEASURES: The primary outcome was prescription of an OAC with warfarin sodium or a non-vitamin K antagonist OAC. RESULTS: The study cohort comprised 429 417 outpatients with AF. Their mean (SD) age was 71.3 (12.9) years, and 55.8% were male. Prescribed treatment consisted of an OAC (192 600 [44.9%]), aspirin only (111 134 [25.9%]), aspirin plus a thienopyridine (23 454 [5.5%]), or no antithrombotic therapy (102 229 [23.8%]). Each 1-point increase in risk score was associated with increased odds of OAC prescription compared with aspirin-only prescription using the CHADS2 score (adjusted odds ratio, 1.158; 95% CI, 1.144-1.172; P < .001) and the CHA2DS2-VASc score (adjusted odds ratio, 1.163; 95% CI, 1.157-1.169; P < .001). Overall, OAC prescription prevalence did not exceed 50% even in higher-risk patients with a CHADS2 score exceeding 3 or a CHA2DS2-VASc score exceeding 4. CONCLUSIONS AND RELEVANCE: In a large quality improvement registry of outpatients with AF, prescription of OAC therapy increased with a higher CHADS2 score and CHA2DS2-VASc score. However, a plateau of OAC prescription was observed, with less than half of high-risk patients receiving an OAC prescription

    Surface Potential Driven Water Harvesting from Fog.

    Get PDF
    Access to clean water is a global challenge, and fog collectors are a promising solution. Polycarbonate (PC) fibers have been used in fog collectors but with limited efficiency. In this study, we show that controlling voltage polarity and humidity during the electrospinning of PC fibers improves their surface properties for water collection capability. We experimentally measured the effect of both the surface morphology and the chemistry of PC fiber on their surface potential and mechanical properties in relation to the water collection efficiency from fog. PC fibers produced at high humidity and with negative voltage polarity show a superior water collection rate combined with the highest tensile strength. We proved that electric potential on surface and morphology are crucial, as often designed by nature, for enhancing the water collection capabilities via the single-step production of fibers without any postprocessing needs

    Enhanced Piezoelectricity of Electrospun Polyvinylidene Fluoride Fibers for Energy Harvesting

    Get PDF
    Piezoelectric polymers are promising energy materials for wearable and implantable applications for replacing bulky batteries in small and flexible electronics. Therefore, many research studies are focused on understanding the behavior of polymers at a molecular level and designing new polymer-based generators using polyvinylidene fluoride (PVDF). In this work, we investigated the influence of voltage polarity and ambient relative humidity in electrospinning of PVDF for energy-harvesting applications. A multitechnique approach combining microscopy and spectroscopy was used to study the content of the β-phase and piezoelectric properties of PVDF fibers. We shed new light on β-phase crystallization in electrospun PVDF and showed the enhanced piezoelectric response of the PVDF fiber-based generator produced with the negative voltage polarity at a relative humidity of 60%. Above all, we proved that not only crystallinity but also surface chemistry is crucial for improving piezoelectric performance in PVDF fibers. Controlling relative humidity and voltage polarity increased the d33 piezoelectric coefficient for PVDF fibers by more than three times and allowed us to generate a power density of 0.6 μW·cm-2 from PVDF membranes. This study showed that the electrospinning technique can be used as a single-step process for obtaining a vast spectrum of PVDF fibers exhibiting different physicochemical properties with β-phase crystallinity reaching up to 74%. The humidity and voltage polarity are critical factors in respect of chemistry of the material on piezoelectricity of PVDF fibers, which establishes a novel route to engineer materials for energy-harvesting and sensing applications

    Scintillator counters with WLS fiber/MPPC readout for the side muon range detector (SMRD)of the T2K experiment

    Full text link
    The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPC's) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.Comment: 7 pages, 4 figures; talk at TIPP09, March 12-17, Tsukuba, Japan; to be published in the conference proceeding

    The T2K Side Muon Range Detector

    Full text link
    The T2K experiment is a long baseline neutrino oscillation experiment aiming to observe the appearance of {\nu} e in a {\nu}{\mu} beam. The {\nu}{\mu} beam is produced at the Japan Proton Accelerator Research Complex (J-PARC), observed with the 295 km distant Super- Kamiokande Detector and monitored by a suite of near detectors at 280m from the proton target. The near detectors include a magnetized off-axis detector (ND280) which measures the un-oscillated neutrino flux and neutrino cross sections. The present paper describes the outermost component of ND280 which is a side muon range detector (SMRD) composed of scintillation counters with embedded wavelength shifting fibers and Multi-Pixel Photon Counter read-out. The components, performance and response of the SMRD are presented.Comment: 13 pages, 19 figures v2: fixed several typos; fixed reference

    Surface potential and roughness controlled cell adhesion and collagen formation in electrospun PCL fibers for bone regeneration

    Get PDF
    Surface potential of biomaterials is a key factor regulating cell responses, driving their adhesion and signaling in tissue regeneration. In this study we compared the surface and zeta potential of smooth and porous electrospun polycaprolactone (PCL) fibers, as well as PCL films, to evaluate their significance in bone regeneration. The ' surface potential of the fibers was controlled by applying positive and negative voltage polarities during the electrospinning. The surface properties of the different PCL fibers and films were measured using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM), and the zeta potential was measured using the electrokinetic technique. The effect of surface potential on the morphology of bone cells was examined using advanced microcopy, including 3D reconstruction based on a scanning electron microscope with a focused ion beam (FIB-SEM). Initial cell adhesion and collagen formation were studied using fluorescence microscopy and Sirius Red assay respectively, while calcium mineralization was confirmed with energy-dispersive x-ray (EDX) and Alzarin Red staining. These studies revealed that cell adhesion is driven by both the surface potential and morphology of PCL fibers. Furthermore, the ability to tune the surface potential of electrospun PCL scaffolds provides an essential electrostatic handle to enhance cell-material interaction and cellular activity, leading to controllable morphological changes

    How simple can a model of an empty viral capsid be? Charge distributions in viral capsids

    Full text link
    We investigate and quantify salient features of the charge distributions on viral capsids. Our analysis combines the experimentally determined capsid geometry with simple models for ionization of amino acids, thus yielding the detailed description of spatial distribution for positive and negative charge across the capsid wall. The obtained data is processed in order to extract the mean radii of distributions, surface charge densities and dipole moment densities. The results are evaluated and examined in light of previously proposed models of capsid charge distributions, which are shown to have to some extent limited value when applied to real viruses.Comment: 10 pages, 10 figures; accepted for publication in Journal of Biological Physic

    Multiplicities of charged pions and unidentified charged hadrons from deep-inelastic scattering of muons off an isoscalar target

    Get PDF
    Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable xx, the relative virtual-photon energy yy and the relative hadron energy zz. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target (6^6LiD). They cover the kinematic domain in the photon virtuality Q2Q^2 > 1(GeV/c)2)^2, 0.004<x<0.40.004 < x < 0.4, 0.2<z<0.850.2 < z < 0.85 and 0.1<y<0.70.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions

    Measurement of the charged-pion polarisability

    Get PDF
    The COMPASS collaboration at CERN has investigated pion Compton scattering, πγπγ\pi^-\gamma\rightarrow \pi^-\gamma, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction πNiπγ  Ni\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, Q2<0.0015Q^2<0.0015\,(GeV/cc)2^2. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3undertheassumption under the assumption \alpha_\pi=-\beta_\pi$, which relates the electric and magnetic dipole polarisabilities. It is the most precise measurement of this fundamental low-energy parameter of strong interaction, that has been addressed since long by various methods with conflicting outcomes. While this result is in tension with previous dedicated measurements, it is found in agreement with the expectation from chiral perturbation theory. An additional measurement replacing pions by muons, for which the cross-section behavior is unambigiously known, was performed for an independent estimate of the systematic uncertainty.Comment: Published version: 9 pages, 3 figures, 1 tabl
    corecore