1,237 research outputs found

    Targeting androgen receptor signaling with MicroRNAs and Curcumin: a promising therapeutic approach for Prostate Cancer Prevention and intervention

    Get PDF
    Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progression of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug delivery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC

    Full Genome Characterization of the Culicoides-Borne Marsupial Orbiviruses: Wallal Virus, Mudjinbarry Virus and Warrego Viruses

    Get PDF
    Viruses belonging to the species Wallal virus and Warrego virus of the genus Orbivirus were identified as causative agents of blindness in marsupials in Australia during 1994/5. Recent comparisons of nucleotide (nt) and amino acid (aa) sequences have provided a basis for the grouping and classification of orbivirus isolates. However, full-genome sequence data are not available for representatives of all Orbivirus species. We report full-genome sequence data for three additional orbiviruses: Wallal virus (WALV); Mudjinabarry virus (MUDV) and Warrego virus (WARV). Comparisons of conserved polymerase (Pol), sub-core-shell 'T2' and core-surface 'T13' proteins show that these viruses group with other Culicoides borne orbiviruses, clustering with Eubenangee virus (EUBV), another orbivirus infecting marsupials. WARV shares <70% aa identity in all three conserved proteins (Pol, T2 and T13) with other orbiviruses, consistent with its classification within a distinct Orbivirus species. Although WALV and MUDV share <72.86%/67.93% aa/nt identity with other orbiviruses in Pol, T2 and T13, they share >99%/90% aa/nt identities with each other (consistent with membership of the same virus species - Wallal virus). However, WALV and MUDV share <68% aa identity in their larger outer capsid protein VP2(OC1), consistent with membership of different serotypes within the species - WALV-1 and WALV-2 respectively

    Analysis of the variability of nursing care by pathology in a sample of nine Belgian hospitals

    Get PDF
    info:eu-repo/semantics/published27th Patient Classification Systems International (PCSI) Working Conference, Montreal, Canada, October 201

    Unified treatment of recoil and Doppler broadening in molecular high-energy photoemission

    Get PDF
    Doppler and recoil effects are an integral part of the photoemission process at the high kinetic energies reached in hard x-ray photo-electron spectroscopy (HAXPES) and have a major effect on the observed lineshape, resulting in broadening, energy losses and discrete excitations. These effects can be modeled with a high degree of detail for small systems like diatomic molecules, for larger systems such treatment is often superfluous as the fine spectral features are not observable. We present a united description of the Doppler and recoil effects for arbitrary polyatomic systems and offer an approximate description of the recoil- and Doppler-modified photoemission spectral lineshape as a practical tool in the analysis of HAXPES spectra of core-level photoemission. The approach is tested on the examples of carbon dioxide and pentane molecules. The C and O 1s photoelectron spectra of CO2 in gas phase were also measured at 2.3 and 7.0 keV photon energy at Synchrotron SOLEIL and the spectra were analyzed using the model description. The limitations and applicability of the approach to adsorbates, interfaces and solids is briefly discussed

    Development of an SPR imaging biosensor for determination of cathepsin G in saliva and white blood cells

    Get PDF
    Cathepsin G (CatG) is an endopeptidase that is associated with the early immune response. The synthetic compound cathepsin G inhibitor I (CGI-I) was tested for its ability to inhibit the activity of CatG via a new surface plasmon resonance imaging assay. CGI-I was immobilized on the gold surface of an SPR sensor that was first modified with 1-octadecanethiol. A concentration of CGI-I equal to 4.0 Οg¡mL-1 and a pH of 8.0 were found to give the best results. The dynamic response of the sensor ranges from 0.25 to 1.5 ng¡mL-1, and the detection limit is 0.12 ng¡mL-1. The sensor was applied to detect CatG in human saliva and white blood cells

    Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties

    Get PDF
    Thermoplastic starch (TPS) matrix was reinforced with various kenaf bast cellulose nanofiber loadings (0–10 wt%). Thin films were prepared by casting and evaporating the mixture of aqueous suspension of nanofibers (NFs), starch, and glycerol which underwent gelatinization process at the same time. Moreover, raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The effects of filler type and loading on different characteristics of prepared materials were studied using transmission and scanning electron microscopies, X-ray diffractometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and moisture absorption analysis. Obtained results showed a homogeneous dispersion of NFs within the TPS matrix and strong association between the filler and matrix. Moreover, addition of nanoreinforcements decreased the moisture sensitivity of the TPS film significantly. About 20 % decrease in moisture content at equilibrium was observed with addition of 10 wt% NFs while this value was only 5.7 % for the respective RFs reinforced film

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore