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Abstract 

Prostate cancer (PC) is a multifactorial disease characterized by the abrogation of androgen receptor signaling. 
Advancement in microbiology techniques has highlighted the significant role of microRNAs (miRNAs) in the progres‑
sion of PC cells from an androgen-dependent to an androgen-independent state. At that stage, prostate tumors also 
fail to respond to currently practiced hormone therapies. So, studies in recent decades are focused on investigating 
the anti-tumor effects of natural compounds in PC. Curcumin is widely recognized and now of huge prestige for its 
anti-proliferative abilities in different types of cancer. However, its limited solubility, compatibility, and instability in the 
aqueous phase are major hurdles when administering. Nanoformulations have proven to be an excellent drug deliv‑
ery system for various drugs and can be used as potential delivery platforms for curcumin in PC. In this review, a shed 
light is given on the miRNAs-mediated regulation of androgen receptor (AR) signaling and miRNA-curcumin interplay 
in PC, as well as on curcumin-based nanoformulations that can be used as possible therapeutic solutions for PC.

Keywords:  MicroRNAs, Curcumin, Nanoformulations, Diagnostic markers, Androgen receptor signaling, Prostate 
cancer

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds 
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea‑
tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Prostate cancer (PC) is a leading cause of death in the 
male population worldwide [1]. Briefly, it is a complex 
disease characterized by an altered cell signaling pathway 

that triggers uncontrolled growth and differentiation. 
Different molecular cascades are crucial for normal 
cell growth and cell-to-cell communication [2] so that 
changes in such signaling pathways can trigger tumor 
heterogeneity and aggressiveness [3]. PC is ranked 
fifth among the causes of death in males, affecting the 
age group between 60 and 65  years [4]. The underlying 
causes of PC involve abrogation of androgen receptor 
signaling, a pivotal player in regulating and maintain-
ing the normal growth of the prostate gland [5]. Radia-
tion therapy and surgery are the two currently available 
therapeutic options for PCs and androgen deprivation 
therapy (ADT) for persistent advanced metastatic disease 
cases. Despite the ADT and other therapeutic options 
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available, tumor recurrence is common and can lead to 
castration-resistant (CRPC) [6]. Androgen receptor (AR) 
is an important mediator of prostate gland growth and 
development, which is vital for prostate carcinogenesis 
and PC progression [7]. AR is predominantly expressed 
in all PC cases [7]. Several studies have shed light on the 
relationship between the cell levels of AR, PC metastasis, 
and progression. Aberrant AR signaling has been consid-
ered a pivotal player in transforming clinically localized 
hormones into aggressive-resistant cancers [8]. Prostate-
specific antigen (PSA) is a diagnostic marker currently 
employed to measure the actual contortion caused by 
the abrogated AR signaling pathway [9]. A plethora of 
studies have delineated the mechanisms responsible for 
therapeutic failure in cases of aggressive PC [10, 11]. 
Mutations in AR receptor, AR overexpression, intrac-
rine production, contorted expression of enzymes and 
cofactors of AR, autonomous activation of AR signaling 
by cytokines in the absence of androgen ligands, and the 
presence of multiple splice variants of AR are the main 
causative agents responsible for the therapeutic failure 
[12, 13]. Thus, AR signaling abrasions are the main driv-
ing factors behind PC progression and drug resistance 
[13].

Several therapeutic strategies are analyzed in pre-
clinical studies to find an appropriate and effective 
drug resistance and tumor recurrence solution. Treat-
ment with glutamate inhibitors was studied in xenograft 
mice, and findings of the study depicted the restoration 
of radiosensitivity of grafted tumor cells [14]. Likewise, 
combine the administration of chemotherapy drugs is 
another strategy that is being evaluated in vitro. Oxali-
platin, patulin, and emetine reported having a synergis-
tic effect on the viability of tumor cells, which depended 
on the amount and sequence of administered drugs [15]. 
Recent studies have also reported the influence of miR-
NAs on the molecular landscape of tumor cells. They are 
important transcription, translation, transportation, and 
ubiquitination mediators [16]. It has come to light less 
lately that miRNAs can influence AR signaling at various 
levels. Their interplay with AR signaling can be valuable 
for devising new diagnostic and therapeutic strategies for 
PC [17].

The modulatory influence of several natural com-
pounds on miRNA functioning in cancers is dem-
onstrated in numerous investigations. Similarly, by 
enhancing the activity of tumor suppressor miRNAs 
or by silencing the expression of oncomiRNAs, natu-
ral compounds regulate the signal transduction through 
many cellular pathways. The extracts of Pygeum africa-
num are reported to have antagonistic activity against the 
androgen receptor in benign prostate lesions [18]. Co-
administration of ursolic acid, resveratrol, and curcumin 

in prostate xenograft mice led to a reduction in tumor 
size by modulating mTOR and glutamine pathway [19]. 
Similarly, bitter melon extracts also regulate the mTOR 
pathway to induce autophagy, ultimately resulting in cell 
death. Extracts of bitter melon also induce modulation of 
natural killer cells and Treg cells to inhibit proliferation 
of tumor cells [20, 21]. Curcumin is a natural compound 
derived from the roots of the plant Curcuma longa L. 
[22]. Indeed, the curcumin mediated modulation of miR-
NAs for progressive control of cancer growth and prolif-
eration is an exciting avenue. However, a few studies have 
evidenced the involvement of curcumin in the modula-
tion of miRNAs in different cancers [23–25].

Nonetheless, curcumin has been reported to have tre-
mendous anti-proliferative capabilities [26]. Despite its 
hydrophobic nature, limited bioavailability and rapid 
metabolism are viewed as stumbling blocks that have 
hampered its therapeutic activity [26]. In such a way, 
nanoformulations have been considered to improve cur-
cumin delivery at target sites [27]. Nanodelivery systems 
have been extensively used in the modern pharmaceuti-
cal industry because of their limited cytotoxicity and 
high specificity; so, curcumin nanoformulations can be 
effectively used to treat PC and other diseases [28]. In 
this sense, this review aims to provide an overview of the 
AR signaling in PC, its interaction with miRNAs and cur-
cumin, and the currently available curcumin nanoformu-
lations that can be implemented as possible therapeutic 
solutions in both normal and aggressive forms of PC.

Androgen receptor (AR) signaling: an overview
Testosterone is a 19-carbon steroid produced in male 
testes with the help of adrenal glands. It belongs to the 
androgenic steroids, which are key modulators of sev-
eral developmental and physiological responses. Tes-
tosterone is converted to dihydrotestosterone (DHT) 
by the action of 5α-reductase, an enzyme generated by 
the cytochrome P450 [29]. The DHT has been reported 
to be highly expressed in genital tissues and prostate 
glands. Together, DHT and testosterone can activate 
the AR signaling. However, DHT has a greater bind-
ing affinity for AR and can trigger its activation even 
at minimal concentrations compared to testoster-
one. AR is usually located in the cytoplasm when not 
activated by the ligand [30]. AR has been investigated 
to be associated with heat shock proteins (HSPs) in 
the cytoplasm, namely HSP-90, HSP-70, HSP-56, and 
other molecular chaperones [31]. This association 
enables both AR activation and translocation to the 
nucleus and cytoplasm. HSPs interact with cytoskel-
etal proteins, such as filamin A (FlnA) that guides AR 
either toward the nucleus or cytoplasm by interacting 
with the hinge-region of AR [31]. Androgens further 
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enhance this interaction between AR and FlnA, and 
the co-localization of FlnA and AR in the presence of 
androgens recruits integrin-β1 [32, 33]. This recruit-
ment promotes the activation of focal adhesion kinase 
(FAK) and Ras-related C3 botulinum toxin substrate 
1 (RAC1). These two molecules strictly modulate cell 
migration in PC [34]. Research has shed light on the 
fact that these small molecular interactions between 
AR, FlnA, Rac1, and FAK trigger cell migration, driving 
force in PC progression and metastasis [33]. Indeed, the 
binding of androgens (ligands) brings conformational 

changes in AR, resulting in a pocket that generates 
an AF-2 binding surface that aid in the recruitment 
of coactivators and nuclear transportation of AR [33]. 
Once AR reaches the nuclear environment, it interacts 
with the AR response elements (AREs) that recruits it 
to the promoter region of the gene. Then, the AR tran-
scriptional complex is completed by the addition of co-
regulators that can either promote gene activation or 
inhibition [35]. A brief scheme of such a mechanism is 
provided in Fig. 1.

Fig. 1  A description of both ligand dependent- and independent-AR signaling. Binding of DHT to androgen facilitates its transportation to the 
nucleus, where it exerts its influence through regulating the transcription of key genes with the help of cofactors and coregulators. In ligand 
AR-independent activation, AR receptor is activated by either insulin growth factor/epidermal growth factor receptor or by the interleukin-6 
signaling which through various cross-talks trigger the expression of desired genes
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MiRNAs and androgen signaling
MicroRNAs (miRNAs) are a class of small (18–22 nt), 
non-coding, and indigenous RNA molecules that actively 
regulate the expression of other genes by binding to com-
plementary sequences in 3’UTR of mRNAs to inhibit 
translation. More than 2000 miRNAs, and imaginably 
there are a huge number of target mRNAs since each 
miRNA can bind multiple molecules [36]. Thus, the role 
of miRNAs in almost all cell processes is extensive and is 
being unraveled with each passing day. Briefly, the miR-
NAs expression is induced by a number of regulators, 
including androgen, ultimately used to control several 
physiological processes, such as apoptosis, cell division, 
and cancer growth and development [37].

Several AR variants (ARVs) result from alterna-
tive splicing of premature AR and are the real drive 
behind tumor progression. In most ARVs, the ligand-
binding domain is missed; however, due to the N-ter-
minal domain, they retain the tumor progression 
abilities [38, 39]. In line with the general role and 
mode of action, several miRNAs directly affect or are 
affected by androgen and androgen receptor (AR) to 
play a key role in various tumor regulation (Table  1). 
miRNAs, along with androgen signaling, can work as 
both tumor suppressors and promoters. For exam-
ple, androgen-dependent overexpression of miR-125b 
is linked to PC progression. However, the transient 
expression of miR-125b can induce androgen-inde-
pendent PC by inhibiting the pro-apoptotic Bak1 [40]. 
A recent study has shown that curcumin-encapsulated 
polymersome nanoparticles (CPNs) can deregulate 
miR-125b and play a role in suppressing breast cancer 
(BC) [41]. Also, androgen-induced release and bind-
ing of AR can directly bind to the promoter region 
miR-21, a well-known oncomiR miRNA [42], which 
upregulates its expression, resulting in CAP progres-
sion [43]. AR-induced upregulation of miR-21 results 
in deregulation of tumor suppressor Pdcd4, since miR-
21, targets its 3’UTR in PC progression [44]. Curcumin 

inhibits miR-21 expression via AP-1, resulting in 
tumor suppressor Pdcd4 stabilization in colorectal 
cancer [45]. Another study reported at least 10 andro-
gen-responsive miRNAs, including miR-141, miR-
200a, and miR-148a, that promote PC. Among these 
miRNAs, miR-148a binds to the 3′-untranslated region 
of cullin-associated and neddylation-dissociated 1 
(CAND1) mRNA. It inhibits the CAND1 expression, a 
negative regulator of SKP1-Cullin1-F-box (SCF) ubiq-
uitin ligases, by binding to the 3′-untranslated region 
of CAND1 mRNA [46]. Contrarily, miR-148a has been 
linked to abrogation of epithelial-mesenchymal transi-
tion (EMT), which plays a critical role in cancer inva-
sion and metastasis, at the same time that it exerts a 
suppressive role in pancreatic cancer cells invasion by 
targeting Wnt10b and inhibiting the Wnt/β-catenin 
signaling pathway [47]. Thus, the role of miR-148a 
varies in the progression of different kinds of cancers. 
Interestingly, just like its role in different kinds of can-
cer progression, miR-148a expression is differently 
regulated by various curcuminoids [48]. More specifi-
cally, curcumin I (diferuloylmethane) does not affect 
the miR-148a expression, while curcumin II (des-
methoxycurcumin) downregulates, while curcumin III 
(bisdemethoxycurcumin) upregulates the miR-148a 
expression [48]. Similarly, another study has unraveled 
the role of several miRNAs, including miR-19a, miR-
27a, and miR-133b, in PC progression in LNCaP cells 
in response to androgen. It was further unveiled that 
all these miRNAs have different mechanisms on can-
cer progression. For instance, miR-19a promotes PC 
by inhibiting a number of proteins, including SUZ12, 
RAB13, SC4MOL, PSA, P, and ABCA1, whereas miR-
27a does the same by inhibiting ABCA1 and PDS5B. 
Lastly, miR-133b inhibits CDC2L5, PTPRK, RB1CC,1, 
and CPNE3 in its course to promote PC [49]. Simi-
larly, miR-30 directly inhibits the AR expression and 
miR-30, enhancing the AR expression and androgen-
independent cell growth, ultimately acting as a tumor 
suppressor in PC [50]. Among these miRNAs, the 
effect of curcumin has been studied in miR-27, and it 
was found that curcumin suppresses the miR-27a in 
colorectal cancer [51, 52]. Interestingly, some miRNAs 
are also able to regulate androgen signaling. In this 
regard, a comprehensive proteomic profile revealed at 
least 12 miRNAs able to regulate AR expression, play-
ing a role in cancer progression [53]. This study fur-
ther reported that miR-135a directly binds to AR and 
causes its inhibition that could be restored by andro-
gen depleted conditions. Similarly, miR-34 expressions 
are negatively correlated with AR expression, indi-
cating a suppressive role of miR-34 [54]. A study has 
also shown that curcumin can increase the miR-34a 

Table 1  List of miRNAs regulating AR signaling in PC

MiRNAs Expression Comment References

miR-125b Up regulated Androgen inde‑
pendent growth

[40]

miR-21 Up regulated Expression is 
promoted by AR 
signaling

[43]

miR-30 Down regulated Inhibit AR [50]

miR-34 Down regulated Inhibit AR [54]

miR-135a Down regulated Inhibit AR [53]

miR-205a Down regulated Inhibit AR [56]
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expression in SGC-7901 cells and inhibit cell prolif-
eration, migration, and invasion. Curcumin could also 
significantly inhibit cell cycle progression in G0/G1-S 
phase and increase the number of cells in the G0/G1 
phase, downregulating the Bcl-2, CDK4, and cyclin D1 
protein expression in cells and tissues [55]. However, 
the regulatory role of curcumin in the aforementioned 
cell processes and their link with the miR-34 family 
remains elusive.

Another miRNA, named miR-205, is also being stud-
ied, and evidence highlight that it negatively corre-
lates with AR expression and deregulation in PC [56]. 
In such a way, it was stated that poly(lactic-co-glycolic 
acid)-curcumin nanoparticles dose can significantly 
induce the miR-205 expression in CaPat at the same 
time that inhibits nuclear β-catenin and AR expression, 
indicating the therapeutic significance of curcumin 
[57]. Another study has reported that curcumin intake 
could significantly upregulate the expression of the 
miR-205 family, specially mmu-miR-205-5p, i.e., 100 
times higher than controls [58].

Besides PC, androgen signaling is also involved in the 
progression of other tumors. For instance, miR-363  is 
involved in BC regulation through AR induction in a 
feedback loop-mediated activation of the IQWD1 gene 
[59]. Similarly, miR-100 and miR-125 expression is neg-
atively correlated with AR in BC progression. Indeed, 
the downregulation of both miRNAs are linked to the 
extracellular release of metalloprotease-13 (MMP13), 
which is inhibited by transient expression of miR-100 
and miR-125, also reversing the BC progression by AR 
[60]. AR negatively induces lncRNA in the progression 
of triple-negative breast cancer (TNBC). AR negative 
induction of lncRNA (ARNILA) promotes epithelial-
mesenchymal transition (EMT) and works as compe-
tent for miR-204 to facilitate the expression of its target 
gene Sox4, an EMT inducer [61].

Interestingly. Curcumin can affect the androgen-
induced miRNAs to play its role in cancer suppres-
sion. For example, curcumin can increase the miR-98 
expression, which targets LIN28A, MMP2, and MMP9 
and suppresses lung cancers in A549 cancer cell lines 
[62]. LIN28A can activate AR via c-mycregulation and 
promotes malignancy of ER-/Her2 + BC [63], thus 
providing strong evidence that curcumin can directly 
or indirectly interact with androgen signaling path-
ways and can affect tumor progression by regulating 
androgen signaling. Moreover, curcumin can regulate a 
number of miRNAs involved in androgen signaling to 
suppress a wide range of cancers. So, further strategies 
can be designed to target these miRNAs by curcumin 
to suppress several cancers. The above-referred mecha-
nisms are briefly pictured in Fig. 2.

Curcumin and miRNA interplay in PC
Various studies have revealed that the treatment with 
natural compounds modulates miRNA expression to 
promote anticancer action [64, 65]. Similarly, curcumin 
has also been documented to employ miRNA in prevent-
ing cancers [66]. In PC, it targets miRNA modulating dif-
ferent cell signaling pathways and affects cell survival, cell 
cycle progression, cell proliferation and death, resistance 
to therapy, metastasis, and autophagy [67]. Table 2 enlists 
miRNAs, whose expression is altered in curcumin-
treated PC cells.

In initial studies, the advantages of microarray were 
explored to get the expression profile of miRNAs in PC 
BxPC3 cell line after curcumin treatment. The expres-
sion of 29 miRNAs was reported to be dysregulated after 
72  h of curcumin exposure (10  µmol/L). After valida-
tion by TaqMan real-time protein chain reaction (PCR), 
the expression of miR-199a* and miR-22 was found to 
be down-regulated and up-regulated, respectively. The 
study also reported that the miR-22  inhibition via the 
use of its anti-sense antagonist enhanced the expression 
of estrogen receptor 1 and SP1 transcription factor [68]. 
However, the anti-PC effect following up-regulation of 
such factors was not demonstrated in the study. But, Pas-
qualini et  al. [69] reported Mcl-1 and LAMC1 as direct 
targets of miR-22  in PC, suggesting the tumor-suppres-
sive role of this miRNA, where its restored concentra-
tion inhibited tumor invasiveness and proliferation. The 
authors also stated that miR-22 expression is down-reg-
ulated in AR-dependent PC [69]. So, it can be speculated 
that curcumin treatment can also be applied against hor-
mone-dependent PC type.

Few studies have been conducted providing insights on 
the mechanism behind curcumin/miRNA interaction in 
PC. According to Zhu and colleagues, curcumin inhibits 
β-catenin and c-myc axis by up-regulating the expression 
of tumor-suppressor miR-34a. Curcumin-induced miR-
34a expression has also been correlated with cell cycle 
regulation-associated proteins, such as p21, PCNA, and 
cyclinD1 [70]. The study outcomes suggested that cur-
cumin-mediated miR-34a modulation induces cell cycle 
progression arrest. Further, the miR-143 expression has 
also been reported to be increased in curcumin-treated 
DU145, LNCaP, and PC3 cells, leading to reduced migra-
tion and growth potential and increased sensitivity to 
radiation therapy [71, 72]. Mechanistically, curcumin 
promotes miR-143 expression by inhibiting DNMT1 and 
DNMT3B expression and inducing hype-methylation 
of the miR-143 promoter [71]. A similar action of cur-
cumin was already reported in bladder cancer, wherein 
vitro treatment led to hypomethylation of the under-
expressed miR-203 promoter region and expression’ 
restoration[73]. Curcumin is also able to up-regulate the 
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expression of FOXD3 in PC cell lines. Being FOXD3 a 
transcription factor, it interacts with the miR-143 pro-
moter region and activates its expression [72]. In turn, 
elevated miR-143 expression induces post-transcriptional 

repression of oncogenic PGK1 and ATG2B expression, 
leading to tumor cells’ restricted growth and autophagy 
inhibition [71, 72].

Fig. 2  Curcumin mediates miRNA regulation in PC. Curcumin treatment modulates several PC pathways by up- or down-regulating the miRNAs 
associated with several cell pathways. It induces miR-143 expression via FOXD3. MiR-143 inhibits its epigenetic silencer DNMT1 and DNMT2B and 
also ATG2B and promotes sensitization to radiotherapy. Curcumin also promotes cell cycle arrest by inhibiting B-catenin/cmyc complex via miR-34, 
sequesters lncRNA-ROR and enhances miR-145 bioavailable, leading to anti-proliferation and invasiveness. Curcumin also inhibits miR-21 and 
induce cell proliferation suppression by blocking NF-kB pathway and apoptosis via PTEN upregulation

Table 2  Curcumin regulated miRNAs and their effect on prostate cancer

Sr No MicroRNAs Expression Anti-tumorigenic influence Refs.

1 miR-34a Increase Cell cycle arrest [70]

2 miR-143 Increase Halted cell proliferation, suppression of cell invasion, re-sensitization 
to radiotherapy and inhibition of autophagy

[71, 72]

3 miR-770-5p
miR-1247

Increase Reduced cell migration [74]

4 miR-145 Increase Cell cycle arrest [79]
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Curcumin can also facilitate anti-proliferation and 
reduce the migration property of PC stem cells by modu-
lating miRNAs. It brought on in vitro inhibition of human 
PC stem cells (HuPaCS cells) carcinogenicity by up-reg-
ulating miR-770-5p, and miR-1247 transcription, which 
is part of the DLK1-DIO3 imprinted gene cluster [74]. 
Curcumin treatment also induces miR-34a expression 
[70]. In PC stem cells, the ectopic expression of miR-34a 
targets a population of CD44+PC cel, ls which prevent 
cancer metastasis and regeneration [75], despite the 
direct relation of curcumin-induced miR-34a expression 
and PC stem cell repression is not validated. Curcumin 
in other cancer stem cells is reported to modulate several 
signaling pathways to curb their growth. For instance, 
it suppressed cancer stemcells growth by targeting the 
hedgehog signaling cascade in bladder cancer, resulting 
in their death [76]. In colon cancer, curcumin treatment 
lowered the resistance to irinotecan therapy by act acti-
vating the intrinsic cell death pathway and promoting 
apoptosis of cancer stem cells [77]. Curcumin treatment-
mediated miRNA regulation has also been explored in 
other cancers, such as in oral cancer stem cells, where 
minute concentrations effectively brought on stem cell 
proliferation inhibition by repressing expression of onco-
miR-21 [78]. So, elucidating the curcumin/miRNA inter-
play will enhance the understanding of cancer stemness’s 
molecular pathology, which could be a new arena in 
treating several types of cancer, including PC.

On the other side, curcumin treatment has also been 
demonstrated to act in improving the bioavailability of 
miRNAs. Mechanistically, it acts on ceRNAs of regu-
lated-miRNAs sponging them. For instance, LncRNA-
ROR, being a molecular sponge of miR-145, prevents 
binding of Oct4 and miR-145 and promotes tumorigenic-
ity. Curcumin, by down-regulating the lncRNA-ROR 
expression, improves miR-145 availability in CD44+/
CD133 + HuPaCS cells, which allows Oct4 inhibition. 
Moreover, an elevated concentration of MiR-145 also 
attenuates cell cycle Cdk4 and Ccnd1 protein expression 
[79]. Curcumin also induces epigenetic activation of miR-
145, leading to its enhanced transcription [71]. Thus, cur-
cumin treatment in HuPaCS cells reduces cancer cells’ 
invasiveness and proliferation abilities.

Concomitantly, different curcumin analogs have also 
been addressed for their pro-apoptotic properties in PC. 
For example, the analog EF24 blocks signal transduc-
tion by acting on the NF-κB pathway and induce death in 
DU-145 cells by inhibiting oncogenic miR-21 expression. 
MiR-21 suppression also inhibits cyclinD1 and Ki67, 
leading to cell cycle arrest and enhancing the concentra-
tion of its target genes, such as PDCD4 and PTEN, which 
leads to cell activation apoptosis pathway [80]. Pyridine-
analogs of curcumin also targets the NF-κB pathway in 

PC3 cells and bring on cell apoptosis at a minimum of 
1 µM dose [81]. In EF24-treated DU-145 cells, up-regu-
lation of anti-carcinogenic miRNAs miR-206, miR-10a, 
miR-345, and miR-409 has also been reported [80], but 
the exact molecular consequence of their up-regulated 
expression is not yet explained.

Few studies have been conducted in describing the cur-
cumin role in modulating miRNAs expression. However, 
the limited data available has very much delineated the 
curcumin contribution in inhibiting PC cells’ growth, 
invasiveness, and autophagy and in restoring their sensi-
tivity to radiation therapy. Yet, there is scope for further 
studies to analyze the curcumin and miRNAs interplay in 
halting angiogenesis in PC. Autophagy and apoptosis go 
side by side, so studies investigating the crosstalk of such 
pathways concerning the role of miRNA can promote the 
current understanding of molecular mechanisms in PC.

Curcumin clinical trials
The therapeutic role of curcumin is known to mankind 
since the 18th century. In 1937, the first study was pub-
lished that reported its use in treating human disease. 
The author treated 67 patients with biliary diseases by 
oral administration of curcunat. Although only one 
patient was cured entirely, side effects were reported in 
the rest of the patients [82]. Several clinical studies on 
different human diseases established their tolerability, 
safety, and toxicity [83, 84].

Further studies demonstrated its effectiveness alone 
and in combination with other clinical drugs or natu-
ral compounds in several diseases, including cancers. 
Phase I/II clinical trial on pancreatic cancer reported 
that curcumin (dose: 8  g/day) induced sensitization for 
gemcitabine, and combined treatment of curcumin and 
gemcitabine was effective well tolerated by all 20 par-
ticipants [85]. Phase II of a similar project reported its 
cancer inhibitory activity and well tolerance with no side 
effects in patients despite its low absorption and bioavail-
ability [86]. Efforts were made to enhance its bioavail-
ability by either co administering drugs that suppressed 
intestinal and hepatic glucuronidation or by reconstitut-
ing it with other turmeric components, such as non-cur-
cuminoids [87, 88].

A random double-blind study was conducted to evalu-
ate the effects of curcumin on prostate-specific antigen 
(PSA). Eighty-five patients participated in the study. 
Patients were administered 100  mg of curcumin and 
40 mg of isoflavones for six months. The study outcome 
showed that combinatory treatment reduced PSA and 
attenuated the activity of the androgen receptor [89]. 
Another double-blind study on eighty two participants 
reported its influence on PSA and highlighted its null side 
effects and well tolerability [90]. However, due to its poor 
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bioavailability and high hydrophobicity, its use has faced 
huge setbacks at the clinical level. So, current efforts are 
aimed to enhance its bioavailability by the application of 
nanotechnology.

Curcumin nanoformulations and their implications in PC
Several curcumin nanoformulations have been devel-
oped, and others are still under clinical trials assessment 
[91]. With the ultimate intent of enhancing the curcumin 
bioavailability, solubility, and absorption, such formula-
tions have been targeted with several modifications [92]. 
In addition to this, several curcumin nanoformulations 
have been prepared to provide shielding to curcumin 
from hydrolysis and to increase its retention period in 
the body [93]. There exist few curcumin-based nanofor-
mulations with more significant pharmaceutical potential 
in diagnosing various human diseases [94], a number of 
studies have shed light on their anti-proliferative poten-
tial [95, 96], but only a scarce amount of them have 
searched for the therapeutic effects of curcumin nano-
formulations in PC [97]. So, here, we have summarized 
the curcumin nanoformulations and their significance in 
regulating PC cell growth.

Liposomes are small spherical vesicles consisting of 
phospholipid bilayers [98]. They have been extensively 
used as potent drug delivery systems for various biologi-
cally active substances due to their low cytotoxicity, high 
solubility, excessive biocompatibility, and limited biodeg-
radability [99]. Liposome nanoformulations are easy to 
prepare. The size of these nanoformulations ranges from 
25 nm to 2.5 mm, suggesting that they can carry almost 
all kinds of cargos to the target site with controlled dis-
tribution and flexibility [100]. Owing to these features, 
liposome-mediated nanoformulations can be consid-
ered as an efficient drug carrier for curcumin. Several 
studies have shed light on the fact that liposomes can 
incorporate curcumin in their phospholipid bilayer and 
ultimately increasing the curcumin distribution over the 
aqueous phase and its potency[93, 101]. For example, a 
study has demonstrated that curcumin-based liposomes 
could reduce PC cell progression in PC-3 human cells. 
The curcumin nanoencapsulation was able to hamper the 
survival rate of PC-3 cells in a time-dependent manner 
compared to free curcumin.

Moreover, liposome carriers increased the curcumin 
absorption in such cells, as illustrated by cell fluorescence 
intensity compared to controls [102]. A nanoformula-
tion of cyclodextrin, commonly known as β-cylodextrin-
curcumin (β-CD-Cur), has been found to increase the 
curcumin bioavailability in PC. β-CD-Cur also raised 
curcumin bioavailability by several folds, suggesting that 
such nanoformulation could be used as a potential car-
rier for improving curcumin delivery [103].

Surfactant free curcumin nanosphere has also been 
implicated in reducing cell growth in different types 
of cancer[104]. For example, poly D, L-lactic-co-gly-
colic acid (PLGA)-encapsulated curcumin nanospheres 
showed anti-PC activity. Cell viability assays confirmed 
that nanospheres of PLGA-encapsulated curcumin 
reduced tumor growth as compared to normal admin-
istration of curcumin. PLGA nanoparticles loaded with 
curcumin successfully inhibited AR and  β-catenin activ-
ity in growth obstructed PC cells. Also, these nanopar-
ticles increased apoptosis and lysosomal activity [105]. 
A study has recently demonstrated that curcumin-based 
gold nanoparticles (cur-AuNPs) could inhibit PC cell 
growth. However, their stability was hampered by a num-
ber of factors, including serum proteins. For instance, the 
addition of fetal bovine serum (FBS) to the in vitro PC 
cell models increased the curcumin bioavailability and 
significantly reduced the growth of PC cell lines[106]. 
Taken together, such findings indicate that cur-AuNPs 
can be used as a sustainable drug delivery platform for 
PC treatment. Moreover, and considering that PC-tar-
geted curcumin nanoformulations have a tremendous 
ability to enhance the curcumin biocompatibility, bio-
availability, specificity, and metabolism, further investi-
gations are needed to explore these nanocarrier systems 
into clinical trials for PC therapy.

Discussion
PC is a serious anomaly with dire consequences, and it 
has been estimated that the death toll concerning PC 
will rise in the coming years [1]. The currently available 
therapeutic options for this complicated disease are still 
limited and pose several side effects, which can even lead 
to life-threatening situations. The AR signaling has been 
a target of immense attention because of its involvement 
in PC. Indeed, the AR signaling pathway’s molecular level 
defects can trigger PC growth, differentiation, metastasis, 
invasion, and aggressiveness [107]. New insights given to 
miRNAs and their interactions with different signaling 
cascades have become more and more significant, as they 
are chief modulators of almost all cells’ machinery [108]. 
Recent literature has shed light on the fact that these 
micro managers could have broader implications in AR 
receptor signaling and can be used as feasible diagnostic 
or therapeutic options for PC treatment [109]. AR sign-
aling abrogation has been responsible for tumor growth 
and metastasis. Several studies have delineated the role 
of miRNAs in AR signaling regulation at various points 
so that miRNAs can be targeted to restore the normal 
AR signaling [39, 109]. In addition, serum miRNAs lev-
els can also be used as possible diagnostic and prognos-
tic markers for early detection and recurrence of disease 
[39]. Tumor heterogeneity is a major obstacle in devising 
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new therapeutics for PC; thus, miRNAs can be a handful 
in providing necessary data for culminating disease at its 
early stages. On the other side, miRNAs interaction with 
natural compounds, most specifically with curcumin, can 
also be explored as a new regime for potential theragnos-
tic approaches. Curcumin has great potential to facilitate 
anti-proliferation and reduce PC stem cell migration by 
modulating miRNAs [110]. In such a way, locked nucleic 
acid (LNAs) approaches can prove beneficial against 
those miRNAs, which are overexpressed in PC and pro-
mote proliferation [111]. Stem cell modulation can also 
be a fruitful approach in preventing disease recurrence, 
despite the clear need for concrete evidence and more in-
depth studies [112]. Moreover, the establishment of miR-
NAs as a possible therapeutic solution for PC demands 
extensive ground breaking studies.

Natural compounds have been in the broad attention 
over the decades for their potential therapeutic benefits. 
To date, a number of natural compounds have been under 
clinical trials for their effective culmination of different 
diseases. Various plant derivatives, such as alkaloids, fla-
vonoids, and terpenoids, have been extensively addressed 
for their anti-proliferative effects on multiple cancer 
types [113]. Among them, a key focus has been given to 
curcumin for its anti-cancer, anti-inflammatory, antibac-
terial, and antioxidant abilities. To date, several curcumin 
derivatives have been under clinical trials to establish 
them as potential therapeutic options for various diseases 
[114–116]. However, little work is done on curcumin for 
PC treatment. One major drawback of curcumin is its 
limited water solubility, making it really challenging as it 
reduces its target-oriented efficacy and absorption [116]. 
In such a way, the curcumin incorporation into various 
nanoformulations has been viewed as a key strategy to 
overcome such limitations. There has been great progress 
on curcumin nanoformulations over the past decade. 
Several curcumin nanoformulations have been used to 
treat a plethora of human diseases [105]. The amalgama-
tion of curcumin with suitable nano-carrier has greatly 
enhanced its pharmacokinetics [117], despite many ques-
tions still exist regarding drug targeted nanoformulations 
for PC. Current researches have devised strategies for the 
successful incorporation of curcumin into various nano-
carriers to ameliorate its bioavailability, cell uptake, spec-
ificity, and effectiveness, but limited work has been done 
regarding its anti-PC activity, with most nanoformula-
tions have not cleared the pre-clinical stages [118, 119].

Thus, as most of these nanoformulations are under pre-
clinical stages, the effects of curcumin-based nanoformu-
lations on humans are still a question that requires plenty 
of pondering. The limited data available from clinical tri-
als underline the huge number of gaps in the safety and 
efficacy of curcumin nanoformulations for therapeutic 

purposes. A major concern associated with the use of 
nanoparticles or nanoformulation is the allergic reac-
tions and immunogenicity. The use of curcumin alone is 
safe and has shown no side effects in any clinical study. 
However, its nanoformulation might incite immune 
allergic reactions. A study reported that such reactions 
are because of the properties of the nanoformulation 
used [120]. Along with robust clinical trials required to 
bring curcumin from bench to bedside, further investi-
gations are necessary to evaluate the safety levels of its 
derivatives and nanoformulations. Finally, targeting AR 
signaling with miRNAs and curcumin, despite seems a 
promising approach, should be validated with plenty of 
more detailed data so that curcumin- and miRNAs-based 
drugs can go through clinical trials.

Conclusions
Androgen signaling has a significant role in the progres-
sion of PC. Several studies have suggested modulating 
this signaling cascade through miRNAs and natural com-
pounds such as curcumin. Few studies have delineated 
the curcumin potential in regulating androgen signal-
ing in PC; however, poor bioavailability of curcumin has 
restricted its clinical use. Nanoformulations of curcumin 
have been tested in PC and other diseases for their poten-
tial. Experimental data suggests its efficacy and capability 
to cure PC, but rising concern for the safety and associ-
ated adverse effects of nanoformulations has presented 
another setback for curcumin clinical use. More in vitro 
and animal model-based studies will enhance our com-
prehension of the safe clinical use of curcumin. Likewise, 
studies targeted to reduce the toxicity of nanoparticles 
should be encouraged. Further, the potential of different 
curcumin derivatives can also be tested for their influ-
ence on the viability of PC cells.
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