3,275 research outputs found

    a network connectivity-based approach

    Get PDF
    The spread of dengue through global human mobility is a major public health concern. A key challenge is understanding the transmission pathways and mediating factors that characterized the patterns of dengue importation into non-endemic areas. Utilizing a network connectivity-based approach, we analyze the importation patterns of dengue fever into European countries. Seven connectivity indices were developed to characterize the role of the air passenger traffic, seasonality, incidence rate, geographical proximity, epidemic vulnerability, and wealth of a source country, in facilitating the transport and importation of dengue fever. We used generalized linear mixed models (GLMMs) to examine the relationship between dengue importation and the connectivity indices while accounting for the air transport network structure. We also incorporated network autocorrelation within a GLMM framework to investigate the propensity of a European country to receive an imported case, by virtue of its position within the air transport network. The connectivity indices and dynamical processes of the air transport network were strong predictors of dengue importation in Europe. With more than 70% of the variation in dengue importation patterns explained. We found that transportation potential was higher for source countries with seasonal dengue activity, high passenger traffic, high incidence rates, high epidemic vulnerability, and in geographical proximity to a destination country in Europe. We also found that position of a European country within the air transport network was a strong predictor of the country's propensity to receive an imported case. Our findings provide evidence that the importation patterns of dengue into Europe can be largely explained by appropriately characterizing the heterogeneities of the source, and topology of the air transport network. This contributes to the foundational framework for building integrated predictive models for bio-surveillance of dengue importation.publishersversionpublishe

    Glycosylation of cancer extracellular vesicles: Capture strategies, functional roles and potential clinical applications

    Get PDF
    Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.This work was funded by FEDER funds through the Operational Programme for Competitiveness Factors COMPETE 2020 (POCI-01-0145-FEDER-016585; POCI-01-0145-FEDER-007274) and national funds through the Foundation for Science and Technology (FCT), under the projects:PTDC/BBB-EBI/0567/2014 to C.A.R and UID/BIM/04293/2013; and the project NORTE-01-0145-FEDER-000029, supported by Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)

    In vitro Antifungal Activity of Baccharis trimera Less (DC) Essential Oil against Dermatophytes

    Get PDF
    Purpose: To identify the main components of the essential oil (EO) of Baccharis trimera Less and investigate their in vitro antifungal activity against seven fungal strains that cause onychomycosis.Methods: The chemical composition of EO was determined using gas chromatography, and its minimum inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and antifungal activity were compared with those of terbinafine and ketoconazole. Scanning electron microscopy (SEM) was used to investigate morphological changes in the strains of interest.Results: Twenty compounds, with β-pinene being the major constituent (23.4 %), were identified in EO. EO exhibited fungicide potential, with MFC values in the range of 0.06 to 125 μg mL−1, which were lower than those of the reference drugs against Trichophyton rubrum CCT 5507 URM1666 and Microsporum canis ATCC 32903. MIC range for the compounds was from 0.03 to 125 μg mL−1 for five strains of the fungi evaluated. For Trichophyton mentagrophytes ATCC 11481 and Epidermophyton floccosum CCFIOC 3757, MIC was ≥ 1000 μg mL−1. Flattening, distortions, and shrinkage were observed in the SEM images of structures of the five fungal species that were subjected to the action of the EO.Conclusion: The results indicate that EO has antifungal activity against filamentous fungi and may be developed as an alternative for the treatment of onychomycosis.Keywords: Baccharis trimera, Fungi, Onychomycosis, Dermatophytes, Antifunga

    Tropical tree branch-leaf nutrient scaling relationships vary with sampling location

    Get PDF
    Bivariate relationships between plant tissue nutrient concentration have largely been studied across broad environmental scales regardless of their covariation with soil and climate. Comparing leaf and branch wood concentrations of C, Ca, K, Mg, N, Na, and P for trees growing in tropical forests in Amazonia and Australia we found that the concentrations of most elements varied with sampling location, but with foliar and branch woody tissues varying from site to site in different ways. Using a Mixed Effect Model (MEM) approach it was further found that relationships between branch and leaf concentrations within individual plots differed in terms of both slope and/or significance to the ordinary least squares (OLS) estimates for most elements. Specifically, using MEM we found that within plots only K and Mg were correlated across organs, but with the K cross-organ intercept estimates varying significantly between sites. MEM analyses further showed that within-plot wood density variations were also negatively related to wood K and Na, suggesting a potentially important role for these cations in water transport and/or storage in woody tissues. The OLS method could not detect significant correlations in any of the above cases. By contrast, although Ca, N, and P leaf and wood tissue concentrations showed similar patterns when individual elements were compared across sites, MEM analyses suggested no consistent association within sites. Thus, for all these three elements, strong within-tree scaling relationships were inferred when data were analyzed across sites using OLS, even though there was no relationship within individual sites. Thus (as for Ca, N, and P) not only can a pooling of data across sites result in trait (co)variations attributable to the environment potentially being incorrectly attributed solely to the species and/or individual (the so-called “ecological fallacy”), but in some cases (as was found here for K and Na) the opposite can also sometimes occur with significant within-site covariations being obscured by large site-site variations. We refer to the latter phenomenon as “environmental obfuscation.

    Rationale, design, and analysis of combined Brazilian household budget survey and food intake individual data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Data on food intake at the individual level and its statistical distribution in population groups defined by age, gender, or geographic areas are important in planning public health and nutrition programs. However, individual-based surveys in representative population samples are expensive to perform.</p> <p>Methods/Design</p> <p>In Brazil, an individual based survey is under consideration to be conducted alongside the household budget survey (HBS), which will be carried out in 2008–2009. This paper presents the methodological framework of dietary data collection and indicates the directions to combining both sources of data.</p> <p>The 2008–2009 Brazilian HBS sample will include 60,000 households. Of the selected HBS households, 30% will be randomly sampled to gather data on individual food intake. Therefore, individual dietary intake data is expected to be gathered for 70,000 individuals. Data collection procedures will comprise: completion of a diary with information regarding food purchases during a seven-day period; registration of all items consumed during two non-consecutive days for all 10 year-old or older members of the household. The sample will be large enough to capture the variation between individuals, and the two records will assure the estimation of the variation within individuals for food groups, energy and nutrients. Data on individual dietary intake and food family budget will be stratified by the five regions of the country and by rural or urban. A pilot study has been conducted in two states, and it indicated that combining individual and budgetary data in a survey is feasible.</p> <p>Discussion</p> <p>This kind of study will allow us to estimate correlations between individual intake and household purchases, overcoming the limitations of individual dietary surveys, and enhancing the HBS with information on eating out and intra-familiar distribution of food.</p

    Soil-induced impacts on forest structure drive coarse woody debris stocks across central Amazonia

    Get PDF
    PublishedJournal Article© 2014, © 2014 Botanical Society of Scotland and Taylor & Francis. Background: Coarse woody debris (CWD) is an essential component in tropical forest ecosystems and its quantity varies widely with forest types. Aims: Relationships among CWD, soil, forest structure and other environmental factors were analysed to understand the drivers of variation in CWD in forests on different soil types across central Amazonia. Methods: To estimate CWD stocks and density of dead wood debris, 75 permanent forest plots of 0.5 ha in size were assessed along a transect that spanned ca. 700 km in undisturbed forests from north of the Rio Negro to south of the Rio Amazonas. Soil physical properties were evaluated by digging 2-m-deep pits and by taking auger samples. Results: Soil physical properties were the best predictors of CWD stocks; 37% of its variation was explained by effective soil depth. CWD stocks had a two-fold variation across a gradient of physical soil constraints (i.e. effective soil depth, anoxia and soil structure). Average biomass per tree was related to physical soil constraints, which, in turn, had a strong relationship with local CWD stocks. Conclusions: Soil physical properties appear to control average biomass per tree (and through this affect forest structure and dynamics), which, in turn, is correlated with CWD production and stocks

    Cationic Amino Acid Uptake Constitutes a Metabolic Regulation Mechanism and Occurs in the Flagellar Pocket of Trypanosoma cruzi

    Get PDF
    Trypanosomatids' amino acid permeases are key proteins in parasite metabolism since they participate in the adaptation of parasites to different environments. Here, we report that TcAAP3, a member of a Trypanosoma cruzi multigene family of permeases, is a bona fide arginine transporter. Most higher eukaryotic cells incorporate cationic amino acids through a single transporter. In contrast, T. cruzi can recognize and transport cationic amino acids by mono-specific permeases since a 100-fold molar excess of lysine could not affect the arginine transport in parasites that over-express the arginine permease (TcAAP3 epimastigotes). In order to test if the permease activity regulates downstream processes of the arginine metabolism, the expression of the single T. cruzi enzyme that uses arginine as substrate, arginine kinase, was evaluated in TcAAP3 epimastigotes. In this parasite model, intracellular arginine concentration increases 4-folds and ATP level remains constant until cultures reach the stationary phase of growth, with decreases of about 6-folds in respect to the controls. Interestingly, Western Blot analysis demonstrated that arginine kinase is significantly down-regulated during the stationary phase of growth in TcAAP3 epimastigotes. This decrease could represent a compensatory mechanism for the increase in ATP consumption as a consequence of the displacement of the reaction equilibrium of arginine kinase, when the intracellular arginine concentration augments and the glucose from the medium is exhausted. Using immunofluorescence techniques we also determined that TcAAP3 and the specific lysine transporter TcAAP7 co-localize in a specialized region of the plasma membrane named flagellar pocket, staining a single locus close to the flagellar pocket collar. Taken together these data suggest that arginine transport is closely related to arginine metabolism and cell energy balance. The clinical relevance of studying trypanosomatids' permeases relies on the possibility of using these molecules as a route of entry of therapeutic drugs

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form
    corecore