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Abstract

The spread of dengue through global human mobility is a major public health concern. A key

challenge is understanding the transmission pathways and mediating factors that character-

ized the patterns of dengue importation into non-endemic areas. Utilizing a network connec-

tivity-based approach, we analyze the importation patterns of dengue fever into European

countries. Seven connectivity indices were developed to characterize the role of the air pas-

senger traffic, seasonality, incidence rate, geographical proximity, epidemic vulnerability,

and wealth of a source country, in facilitating the transport and importation of dengue fever.

We used generalized linear mixed models (GLMMs) to examine the relationship between

dengue importation and the connectivity indices while accounting for the air transport net-

work structure. We also incorporated network autocorrelation within a GLMM framework to

investigate the propensity of a European country to receive an imported case, by virtue of its

position within the air transport network. The connectivity indices and dynamical processes

of the air transport network were strong predictors of dengue importation in Europe. With

more than 70% of the variation in dengue importation patterns explained. We found that

transportation potential was higher for source countries with seasonal dengue activity, high

passenger traffic, high incidence rates, high epidemic vulnerability, and in geographical

proximity to a destination country in Europe. We also found that position of a European

country within the air transport network was a strong predictor of the country’s propensity to

receive an imported case. Our findings provide evidence that the importation patterns of

dengue into Europe can be largely explained by appropriately characterizing the heteroge-

neities of the source, and topology of the air transport network. This contributes to the foun-

dational framework for building integrated predictive models for bio-surveillance of dengue

importation.

Introduction

During the last few decades, dengue fever has rapidly spread into new geographical regions

with a resultant increase in its global incidence [1, 2]. This global spread has notably been
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linked to increasing human mobility, particularly air travel [3–5]. Global aviation network has

increased in volume by almost eight-fold in the past 40years, enabling human movement

across long distances in a relatively short time [6–8]. Thus, creating a mobility network for the

spread of infectious diseases like dengue [9–11]. Infected air travelers have contributed signifi-

cantly to the importation of dengue to non-endemic areas [12–14].

As human mobility and connectivity continue to advance, dengue spread via importation

will continue to increase at unpredictable rates [4, 15]. The complexity of the air transport net-

work poses a substantial challenge in the understanding of the dynamics of dengue spread and

importation [16, 17]. How to effectively tackle dengue spread mediated via the complex air

transport network is a priority of vector-borne disease surveillance and control [18–20]. In

this context, understanding the dynamics by which dengue fever is transported, across the

complex and dynamic mobility network, is an important first step [5].

Previous work on network-mediated epidemic often assumes a common framework, that

the probability of an imported infection is directly correlated with the number of arriving air

passengers [13, 21]. However, a simple correlation between imported cases and crude travel

statistics is insufficient to explain the transmission pathways [21]. Such an approach does not

allow to differentiate imported cases arriving from countries with higher infection risk and

transport potential, or if the variance in the number of cases is also mediated by other socio-

economic and anthropogenic factors. Neither does this capture the connectivity patterns of the

mobility network that influence or constrains the dynamics of importation.

Recent studies have applied a range of social network modeling approaches to understand-

ing the transmission pathways of a network-mediated epidemic. From a general perspective,

these methods combine the derived attributes of the epidemic source country and the topology

of the transporting network to explain importation dynamics [17, 22]. Epidemic source attri-

butes are characterized by the heterogeneities in the passenger’s air travel volume, socio-eco-

nomic and anthropogenic factors, that mediate the risk of infection and transport of the

disease [23]. While the network topology is characterized by centrality measures of the nodes

(countries) in the air transport network. [24, 25]. To our knowledge, there are no studies that

apply this explanatory power of social network analysis to characterize dengue importation

patterns into Europe.

Here, we adopt a refined network connectivity approach to analyze data on imported den-

gue cases from 21 European countries, within a 6-year period (2010–2015). Specifically, our

approach is outlined in the following: (1) We integrate a source-to-destination country combi-

nation to construct a network connectivity for dengue importation; (2) We then examine con-

nectivity measures accounting for factors mediating the transport and importation potential

from the source country; (3) Lastly, we investigate how the topology of the air transport net-

work influences the importation risk from a source and the propensity of a destination country

to receive an imported case.

Methods

Conceptual framework

Our proposed network connectivity framework adapts techniques from previous work on dis-

persal connectivity, spatial autocorrelation and network modelling [25–28] to capture the

dynamics of dengue importation. The inputs for our analysis consist of the dengue importa-

tion data, air travel data and the underlying air transport network structure.

In the sections below, we describe the various inputs and our modeling approaches. In the

first section, we describe the disease and air travel data, with their respective sources. Next, we

describe the connectivity indices representing factors that potentially facilitate the transport
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and importation of dengue from a source country into Europe. We then describe the general-

ized linear mixed effect (GLMM) modelling approach for quantifying the variation in dengue

importation as explained by the indices.

The next section introduces the concept of dependency network analysis to account for the

influence of the air transport network structure. Firstly, we describe the construct of the

weighted directed network from the air passenger’s data and then define centrality measures

to characterize each individual node’s (i.e. country) influence within the network. The central-

ity measures of the source countries were then added to the GLMM model of the connectivity

indices to account for the influence of network structure. Finally, we describe an extension of

our analysis to model the propensity of a country in Europe to receive an imported case, by vir-

tue of its network topology (i.e. centrality measures).

Disease data

We analyzed imported cases of dengue fever reported in Europe for the period of 2010–2015.

Dengue fever data was obtained from the European Centre for Disease Prevention and Control

(ECDC) [29]. Routine (weekly) Europe-wide infectious disease surveillance data is collected

from European Economic Area member states (EU/EEA) countries by the ECDC. Data is col-

lected and managed through The European Surveillance System (TESSy) database; a database

provided by the ECDC national focal points for surveillance [30].

Here, we considered confirmed cases of dengue, according to the 2012 EU case definition

for viral haemorrhagic fever (VHF) which defines a confirmed case as any person meeting the

clinical and the laboratory criteria [31]. The subset of imported cases or travel-associated cases

are categorized as persons having been outside the country of notification during the incuba-

tion period of the disease. Place/country of infection was defined as the place the person was

during the incubation period of the disease. A total of 21 EU/EEA countries reported data on

imported dengue, within the period of 2010–2015 (inclusive of zero reporting). For our analy-

sis, we considered each imported case, its country of infection (as source country), the report-

ing country (as destination country) and the reporting month.

Air travel data

To describe the flow of individuals into Europe, we obtained the passenger air travel data for

2010–2015, from the International Air Transport Association (IATA) [32]. IATA Passenger

Intelligence Services (PaxIS) data, is the most comprehensive airline passenger’s data available

today. Data includes the complete passenger itineraries, true origins and destinations, route

segments and connecting points. The data contained over 11,996 airports in 229 different

countries and their territorial dependencies, with calibrated passenger travel volumes for each

route at a monthly timescale. The passenger volumes were available at the country level, i.e.

the total number of passengers traveling from each country worldwide. We used these data to

construct a monthly directional passenger flow from all countries worldwide with a final desti-

nation in Europe (also accounting for all connecting flights). This passenger flow was inclusive

of flow in-between European countries.

Connectivity indices

We assembled seven indices representing factors potentially mediating the importation risk of

dengue from a source country. These indices are decomposed into components representing

the ‘source strength’ (the risk of dengue infection); and the transport and importation poten-

tial (the connection between the source country and the potential destination country in

Europe).
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Indices 1 and 2, characterize dengue monthly activity and annual seasonality in the source

country. These indices were created using worldwide dengue outbreak notifications data from

DengueMap (a unified data collection tool, that brings together disparate dengue reports of

local or imported dengue cases from official, newspapers and other media sources globally)

[33]. Index 1 is defined as having notification of one or more confirmed cases in a given

month (January-December) in the years of 2010 through 2015, index 2 is defined as having

dengue activity (i.e. notification of one or more confirmed cases) in a given month in two or

more years from 2010 through 2015 [34]. Index 3 is the annual dengue incidence estimates of

source country adjusted for the country’s population, obtained from the Institute for Health

Metrics and Evaluation (IHME) [35, 36]. Index 4 is the geographical distance between cen-

troids of source country and destination country, often modelled as a proxy for travel time and

predictor for epidemic arrival times [37]. This assumes that proximity to an endemic source

increases transport and importation potential to destination. Index 5 is the epidemic vulnera-

bility of the source country, represented by the recent infectious disease vulnerability index

from RAND cooperation [38]. This index identifies countries’ vulnerabilities to control poten-

tial disease outbreaks by assessing a confluence of seven broad country level factors: demo-

graphic, health care, public health, disease dynamics, political-domestic, political-international

and economic [38]. This index assumes that most vulnerable countries might pose a higher

risk of infection and transportation. Index 6 is the income per capita (GDP) of source coun-

tries; poor countries with weak economies are associated with poor health outcomes, lesser

abilities to detect, prevent and respond effectively to infectious disease. Hence, we assume

greater importation risk from poorer source countries. Index 7 is the total arriving passengers

from source country to destination country (i.e. accounting for both direct and connecting

flights) which has often been correlated with disease importation [13], with an implicit

assumption that infection risk is equal for all source countries. Hence an increase in passen-

gers, in turn, increases the transport and importation potential.

Source strength for all indices was determined by the endemicity of dengue in the source

country, while transport and importation potential were modelled based on each unique fac-

tor, as detailed in Table 1 below.

To quantify the variation in dengue importation as explained by our proposed connectivity

indices, we fitted a generalized linear mixed effect model (GLMMs) [39] Unit of analysis was a

source-destination-month combination, with a binary response variable coded to indicate a

reported case of imported dengue (1) or not (0). The GLMM was fitted with logit link func-

tions for binomial errors and fixed effects of the connectivity indices and crossed random

effects (intercepts) of the destination country. We also included a fixed effect for time to con-

trol for the following: specific global aviation traffic effects, i.e. increase or decrease in traffic to

a specific country, due to a major event (e.g. traffic increase to London, during the 2012 sum-

mer Olympics), and to also account for variation in reporting rates among countries in specific

months. The time effect was specified by a set of dummy variables, one for each month. To

improve normality, the continuous fixed effects variables were transformed using the log(x+1)

function, then centered on zero, and standardized to unit variance, before model fitting.

Model fits were evaluated by calculating the marginal and conditional GLMM R2 [40]. Like-

wise, model post-estimation using model diagnostic measures and residuals plots were evalu-

ated using the DHARMa residual diagnostics for hierarchical models [41].

Dependency network

Next, to explore the influence of the air transport network structure on the variation of dengue

importation, we incorporate the dependency network approach. This is a system level analysis
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of the activity and topology of the air transport network to investigate the capacity of a country

to influence or be influenced by, other countries within the network by virtue of their connec-

tions [42–44]. The specificity of network influence on dengue importation risk is that the con-

nectivity between a source country (i) and a destination county (j) is not analyzed in isolation,

but in consideration for the effects of z, where z, is the other countries within the network

structure. The implication of this network structural view is that the connection between i and

j is also dependent on the connections between i and z and between j and z. Therefore, the dis-

tributed heterogeneity in the connections is characterized by interdependencies within the

network and must be accounted for statistically [25, 45].

Using IATA passengers air travel data, we constructed 72 weighted directed networks, to

represent the monthly flow of air passengers into Europe, from 2010 to 2015. For each net-

work, countries are represented by a node while edges represent the flow of passengers

between pairs. The network graph is denoted by Gm = (V,E), where VG is a set containing all

the nodes (or vertices), while EG contains all the edges, with m = 1, 2, . . .72 indicating the

month (representing the study period of 2010–2015). Edges are denoted as ei,j, where i is the

source and j is the destination of a travel route represented by the edge. For each connected

pair of nodes i and j, the edge was weighted with the total number of passengers from i to j
given by Wij.

The role of a node in the network and its likelihood to influence the transport and importa-

tion potential of dengue was then characterized by the following centrality measures (Table 2):

Degree centrality. The number of links or connections that a node has, this assigns a

score based on the number of nodes within the network, that an individual node is connected

to [42, 45]. The higher a node’s degree, the more it associates with neighboring nodes, poten-

tially increasing its transport potential or increases its vulnerability to importation (in the case

of a destination country).

Table 1. Connectivity indices (Sj,f) of a focal destination country (j) for the importation of dengue fever (f).

Index Meaning Connectivity (Sj,f) Source strength Transport and importation

1 Dengue activity
X

i6¼j

yi;f Ai
θi,f 1

2 Dengue seasonality†
X

i6¼j

yi;f Si θi,f 1

3 Incidence estimates of source country
X

i6¼j

yi;f IRi
θi,f 1

4 Geographical distance
X

i6¼j

yi;f =lndij
θi,f 1/lndij

5 Epidemic vulnerability‡
X

i6¼j

yi;f =Vi
θi,f 1/Vi

6 Source country’s wealth (GDP)
X

i6¼j

yi;f =lngi θi,f 1/lngi

7 Total air passengers from a source country
X

i6¼j

Pi!j
1 Pi!j

i = source country; j = destination country; f = dengue fever; θi,f = endemic to dengue fever, infection is constantly maintained at a baseline level in country without

external inputs (0 or 1); IR = Incidence rate; d = geographical distance between centroids of countries i and j (in kilometers); V = infectious disease vulnerability; P =
total air passengers; g = Gross domestic product.

† = coded as a binary variable, with a value 0 indicates ‘no activity or seasonal pattern’ and 1 indicates ‘activity or seasonal pattern’ respectively.

‡ = infectious disease vulnerability index is summarized as a normed factor score for each country ranging between 0 and 1, from most vulnerable with the lowest score

to least vulnerable with the highest score, hence we specify the inverse.

Logarithms were used in the equations to decrease variability in raw input data and to improve the normality of the indices.

https://doi.org/10.1371/journal.pone.0230274.t001
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Betweenness centrality. Measures the number of times a node lies on the shortest path

between other nodes in the network [42]. A node with high betweenness metric is expected to

have a higher transport potential, as it bridges between different nodes that are not directly

connected. Alternatively, destination countries with high betweenness are at higher risk of

importation.

Closeness centrality. Measures how close (in terms of topological distance) a node is with

respect to all other nodes [46]. The topological distance between any pair of connected nodes

is given by the inverse of the number of passengers in the corresponding edge. Therefore, the

higher the number of passengers in a given edge, the shorter the distance between them, the

faster an infection gets transported or imported.

Eigenvector centrality. The basic idea of the eigenvector centrality is that a node’s cen-

trality is determined by the combination of its connections and that of its neighbors [47, 48]. A

node will have high eigenvector centrality if it has strong connections with other highly con-

nected nodes. In our context, if a node is connected to other high degree nodes, the higher its

transport potential or the higher its vulnerability to importation from a random source in the

network.

To quantify the influence of the air transport network topology, we employ two different

modelling approaches. Firstly, we account for the network structure in our connectivity frame-

work, by including the centrality measures of the source country. We tested whether GLMMs

based on connectivity indices and the air network centrality measures outperformed the base

model based on the connectivity indices alone. GLMMs were fitted with the same random

effect structure as above. All possible combinations of centrality measures were considered,

resultant models were compared based on their fixed effects ΔAIC and marginal GLMM R2.

Secondly, we model the network topology of the focal destination country as a predictor of

dengue importation. This assumes that dengue importation into a focal destination country

could be directly related to the country’s position in the air transport network. For this model,

centrality measures of the destination countries were fitted as fixed effects, with crossed ran-

dom effects (intercepts) of each time step (i.e. each month). As above, all possible models were

fitted and compared based on their fixed effects ΔAIC and marginal GLMM R2.

All analysis and plots were performed in R software, version 3.5.2 [49], using the following

libraries: glmmtmb [50], igraph [51], tnam [52], DHARMa [41], sjstats [53], ggplot2 [54], cir-

clize [55] and their varying dependencies.

Table 2. Centrality measures for a central node (adapted from [45]).

Centrality measure Characteristics of a central node Equation

1 Degree Connected directly with many other nodes DCi ¼ si ¼
X

j6¼i

Wij

2 Betweenness Lies on many shortest paths linking other pairs. The probability that communication from p to g will go through i BCi ¼
X

p6¼i;p6¼q;q6¼i

gpqðiÞ
gpq

3 Closeness Short communication path to other nodes, a minimal number of steps to reach others CCi ¼
NP
j
lij

4 Eigenvector Connected (directly and/or indirectly) to many other nodes and/or to other high-degree nodes ECi ¼
1

l

X

j

Aijvj

i = source country; j = destination country; s = node strength (i.e. the sum of all edge weights attached to a node); Wij = weight of the edge between nodes i and j; gpq =

the number of shortest-paths between nodes p and q; gpq(i) = the number of shortest-paths between nodes p and q (other random nodes in the network), which pass

through i; N = number of nodes in a network; lij = distance of the shortest between nodes i and j, here weighted distance is given by the inverse of the number of

passengers in the corresponding edge; A = adjacency matrix of the weighted network; λ = leading eigenvalue of A; v = leading eigenvector of A. All centrality measures

were computed based on the weighted air transport network

https://doi.org/10.1371/journal.pone.0230274.t002
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Results

Among the 7,277 imported dengue cases reported in Europe from 2010 to 2015, 4,112 (57.0%)

cases had known travel history, i.e. source country of infection. The cases with the known

source were imported into 21 European countries, from 99 different countries distributed

across all global regions. 62.1% of reported cases originated from South-East Asia Region, with

Thailand, Indonesia, India, and Sri Lanka being the major source of import; 18.0% originated

from Region of the Americas, with most cases coming from Brazil; 12.1% from the Western

Pacific Region, where Vietnam and the Philippines were the major import source. The data

showed that imported cases were most frequently reported in Germany, Sweden, United King-

dom, Italy and Norway (Fig 1).

An annual average of 436 million passengers entered Europe from other countries world-

wide from 2010 to 2015. Of the total number of passengers arriving from regions outside of

Europe, 44% originated from region of the Americas, with higher traffic from the United

states, Canada and Brazil; 19% from the Eastern Mediterranean, with higher traffic from

Morocco, United Arab Emirates and Tunisia; 15% from the Western Pacific with higher traffic

from Thailand, India and Hong Kong; 12% from the African region, with higher traffic from

Algeria, South Africa, Nigeria; 10% from South-East Asia and. A country-level passenger in-

flow from WHO Member States regions is shown in Fig 2. High traffic inflow was most com-

mon in the United Kingdom, France, Germany, Italy, and Spain. Most of the identified dengue

importation hot spots were characterized by a high influx of air passengers, with a tendency

for an increase in importation risk. However, the high influx of passengers does not necessarily

lead to a high number of imported cases of dengue, as total number of arriving passengers was

weakly correlated with the number of imported cases (Spearman’s ƿ = 0.13, p =<0.01, S1 Fig).

Connectivity indices and dengue importation

Our first model investigated the relationship between dengue importation and the connectivity

indices. Among the connectivity indices, GDP and epidemic vulnerability displayed high cor-

relations amongst themselves (Spearman’s ƿ = 0.88, p< .001, S1 Fig). Utilizing a threshold col-

linearity of>0.70, we deemed this pair to be redundant and added each variable in separate

models. In a comparative-fit test, the model including epidemic vulnerability had a slightly

better fit, than the model with GDP (details shown in S1 Appendix in Table 1). Table 3 pres-

ents the results of the GLMM model with estimated coefficients, odds ratios and 95% confi-

dence intervals for each connectivity index. The estimated coefficients represent the relative

influence of each connectivity index on the risk of dengue importation between source–desti-

nation country combinations. In this model, dengue importation was significantly associated

with the following connectivity measures: dengue activity, seasonality, incidence rates, geo-

graphical distance, the epidemic vulnerability of source country and arriving passengers. Eval-

uating the model independently of random effects variance component, these connectivity

indices account for 51% (marginal GLMM R2 of 0.507) of the variation in dengue importation

patterns. Overall the GLMM model accounted for 66% (conditional GLMM R2 of 0.656) of the

variation in dengue importation into Europe. The model fit was adequate, the simulated resid-

ual diagnostics test for overall uniformity showed no evidence of model misspecification.

Influence of air transport network topology

The resulting air transport network from the passenger’s data was a directed graph structure

with 229 nodes and 10261 edges. We took the mean of each centrality measure across the 72

weighted networks to obtain a single value for each node. Based on the mean centrality mea-

sures, the following source countries were most central in respect to all metrics: Canada,
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United States, Australia, United Arab Emirates, China and Brazil. Fig 3 shows the air transport

network connections, with the average degree centrality measures of the source countries for

period of 2010–2015. This figure highlights the most important connections and hide the

noise of rare connections. The network metrics displayed notable relationships, with

Fig 1. Distribution of imported dengue cases by the destination country and the source region. Destination countries are represented by 21 European

countries. Source region represents, 99 different countries distributed across all global. Source countries were grouped into regions for visual representation,

with region grouping defined by the WHO Member States region definition. WHO Member States are grouped into 6 WHO regions: African Region, Region

of the Americas, South-East Asia Region, European Region (not included in source countries), Eastern Mediterranean Region, and Western Pacific Region

[56].

https://doi.org/10.1371/journal.pone.0230274.g001
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moderate-to-high correlations amongst themselves (S2 Fig). Betweenness and Eigenvector

centrality pairs were the most highly correlated (Spearman’s ƿ = 1.00, p< .001). Hence to

avoid redundancy in model fitting, we added the correlated pairs in separate models. All the

network metrics examined were significant predictors of dengue importation. Compared with

the base model of the connectivity indices alone, GLMM fits were substantially improved by

Fig 2. Distribution of air passengers arriving into Europe from WHO regions in 2010–2015. Destination countries are represented by 21 European

countries. Source region represents, 99 different countries distributed across all global. Source countries were grouped into regions for visual representation,

with region grouping defined by the WHO Member States region definition. WHO Member States are grouped into 6 WHO regions: African Region, Region of

the Americas, South-East Asia Region, European Region (not included in source countries), Eastern Mediterranean Region, and Western Pacific Region [56].

https://doi.org/10.1371/journal.pone.0230274.g002
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including the effects of the network topology (Fig 4). The best-fitting model was the model

with degree and betweenness centrality measure pair, alongside the connectivity indices

(Table 3), being the model with the lowest fixed effect AIC.

Network topology as a predictor of importation

Focal destination countries that were most central in the network were the United Kingdom,

Germany, Spain, Italy, and France (Fig 5). Therefore, they are most vulnerable to dengue

importation from a random source country. The centrality measures of the destination coun-

tries were highly correlated amongst themselves, hence it was practically redundant to include

all measures in a single model (S2 Fig). We added each centrality measure in separate models,

to capture the influence of the unique aspect of each nodal centrality. Each centrality measure

was a significant predictor of dengue importation (Table 4). Surprisingly, the eigenvector cen-

trality measure accounted for 70% of the variance in dengue importation (marginal GLMM R2

of 0.706).

Table 3. Comparison of generalized linear mixed models predicting dengue importation in Europe, using the connectivity indices and network autocorrelation (i.e.

centrality measures).

Model 1 Model 2 Model 3

Coefficient [95% CI] Odd ratio

[95% CI]

Coefficient [95% CI] Odd ratio

[95% CI]

Coefficient [95% CI] Odd ratio

[95% CI]

Connectivity Index

Dengue activity 0.31 [0.18, 0.44] 1.36 [1.19,

1.55]

0.29 [0.16, 0.42] 1.33 [1.17,

1.52]

0.27 [0.13, 0.40] 1.30 [1.14,

1.49]

Dengue seasonality 0.12 [-0.01, 0.25] 1.13 [0.99,

1.29]

0.09 [-0.04, 0.23] 1.10 [0.96,

1.25]

0.03 [-0.11, 0.16] 1.03 [0.90,

1.18]

Incidence estimates 1.44 [1.33, 1.55] 4.23 [3.79,

4.72]

1.74 [1.61, 1.87] 5.68 [4.98,

6.49]

1.78 [1.65, 1.91] 5.92 [5.20,

6.75]

Geographical distance -0.52 [-0.65, -0.38] 0.60 [0.52,

0.69]

-0.92 [-1.08, -0.77] 0.40 [0.34,

0.46]

-1.04 [-1.20, -0.88] 0.35 [0.30,

0.42]

Epidemic vulnerability 0.19 [0.10, 0.27] 1.20 [1.10,

1.32]

0.37 [0.27, 0.46] 1.44 [1.31,

1.58]

0.43 [0.33, 0.52] 1.53 [1.40,

1.68]

Total Air passengers 2.01 [1.90, 2.13] 7.49 [6.68,

8.39]

2.03 [1.89, 2.18] 7.63 [6.60,

8.81]

1.78 [1.61, 1.95] 5.91 [5.20,

6.75]

Centrality Measures

Degree — — — — 0.39 [0.22, 0.55] 1.47 [1.25,

1.74]

Betweenness — — — — 0.96 [0.82, 1.11] 2.62 [2.26,

3.02]

Closeness — — 0.05 [-0.07, 0.17] 1.05 [0.94,

1.19]

— —

Eigenvector — — 0.97 [0.81, 1.12] 2.63 [2.25,

3.06]

— —

Model Fit

R2
GLMMðmÞ 0.507 0.535 0.531

R2
GLMMðcÞ 0.656 0.676 0.673

Fixed effects ΔAIC 166.2 36.6 0

Model 1: the based model of connectivity indices; Model 2: Base model with closeness and eigenvector centrality measures; Model 3: Base model with the degree and

betweenness centrality measures.

R2
GLMMðmÞ = Marginal R2; R2

GLMMðcÞ = Conditional R2; ΔAIC = Change in Akaike Information Criterion.

https://doi.org/10.1371/journal.pone.0230274.t003
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Discussion

The importation of dengue into non-endemic regions is primarily initiated by global human

mobility, hence it is critical to understand the dynamics of the transmission pathways based

on the mobility networks. Here, we applied a refine network connectivity approach to model

the importation of dengue into Europe. Our analysis accounted for factors that mediate the

risk of importation from a source country through their effects on source strength and trans-

port potential. In addition, we considered the influence of the air transport network topology

on the importation risk from a source and the propensity of a destination country to receive

an imported case. Our analysis demonstrated that the co-dynamics of the connectivity indices

and the network topology explained more than 70% of the variance in dengue importation pat-

terns. Likewise, the topologically positioning of a focal destination county in the network,

played a key role in the importation patterns. These results contribute to our understanding of

the transmission pathways of dengue importation and the role of the dynamical processes of

the air transport network.

A major focus of our study was the understanding of importation patterns of dengue in

Europe, with consideration to source strength and the characterized air transport network. Air

passengers’ data and transport connections have been used to infer relationships with

imported cases of dengue [13, 57]. However, with the growing complexity of global mobility

and transportation links, it is increasingly difficult to model importation solely on the crude

aggregate statistics of air traffic [16, 58]. Air traffic connections between source and destina-

tion account for a fraction of required modeling parameters for general patterns of importa-

tion, other epidemiological and anthropogenic parameters need to be accounted for. A

fundamental understanding of other mediating factors and transportation dynamics is

required to achieve a more reliable predictive model.

Fig 3. Air transport network and the average degree centrality measure of source countries. The links shows the connections within the air transport

network, highlighting the most important pattern and hide the noise of connections with low passengers’ volume. Each node represents a source country in the

air transport network, and the size of a node is proportional to its mean degree score (averaged from the 72 weighted network), which is weighted by the average

number of passengers with a final destination in Europe. Node color is categorized by region.

https://doi.org/10.1371/journal.pone.0230274.g003
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Our analysis addresses this by endowing each source with a specific pattern of connectivity

that mediates, its strength (risk of infection), transport and importation potential. Source

strength was the risk of infection derived from the endemicity of dengue in a source country,

distinguishing endemic and non-endemic countries. Heterogeneities in source strength were

further characterized by dengue activity and seasonality patterns in the source country. As

expected, an ongoing activity and seasonal pattern of dengue in a source country significantly

increase the transport and importation potential. Transport and importation potential were

also modelled uniquely for each source by the confluence of the various connectivity indices,

accounting for other mediating factors. This modelling approach is corroborated by other sim-

ilar studies [13, 23, 59]. With the results matching our a priori expectations, i.e. higher trans-

port potential for source countries with high passenger traffic, high incidence rates, lower

economic status, and geographical proximity to a destination country.

A new feature of interest in our analysis was the utilization of the infectious disease vulnera-

bility index as an epidemiological factor. The vulnerability index presents a robust tool that

identifies a country’s ability to limit the spread of outbreak-prone diseases [38]. The combined

multifarious nature of this index offers an intuitive understanding of the indigenous vulnera-

bility of a source country. For our analysis, we modelled source strength, transport, and impor-

tation potential to increase with higher vulnerability, as expected most vulnerable countries

poses a greater risk (model 3). Although our study was focused on the earliest stages of a net-

work mediated epidemic, the inclusion of this index for focal destination country could

Fig 4. Forest plot comparing the base model and the network autocorrelation models for explaining dengue importation into Europe. Models are as represented in

Table 3. Plots of the exponential transformed coefficients estimates, i.e. as an odd ratio. The “no effect” line is set at 1 and denoted by the grey line. Asterisks indicate the

significance level of estimates ��� = p<0.001; �� = p<0.01; � = p<0.05.

https://doi.org/10.1371/journal.pone.0230274.g004
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provide insights for modeling the establishment potential of an imported case of dengue. With

the assumption, that recipient countries with higher vulnerability might present greater dis-

semination and establishment risk from an imported case, assuming vector presence and

other ecological and climatic factors mediating transmission [60].

Our analysis went further to incorporate the dependency network approach to account for

the influence of the air transport network topology on dengue importation. Utilizing centrality

Fig 5. Degree centrality measure of the focal destination countries in Europe. Each node represents a country in Europe, and the size of a node is

proportional to its degree, which is weighted by the average number of passengers. For a visual representation, the actual degree score was scaled down by a

factor of 104.

https://doi.org/10.1371/journal.pone.0230274.g005

Table 4. GLMMs modeling centrality measures of the destination countries as a predictor of dengue importation.

Network Metrics Degree Closeness Betweenness Eigenvector

Coefficient [95% CI] 1.12 [1.06, 1.18] 1.32 [1.22, 1.42] 1.25 [1.18, 1.32] 2.88 [2.65, 3.10]

Odd ratio [95% CI] 3.08 [2.90, 3.27] 3.73[3.37, 4.13] 3.49 [3.26, 3.74] 17.73 [14.12, 22.27]

Model Fit

R2
GLMMðmÞ 0.295 0.339 0.313 0.706

R2
GLMMðcÞ 0.270 0.357 0.342 0.719

Fixed effect ΔAIC 794.7 90.2 311.5 0.0

R2
GLMMðmÞ = Marginal R2; R2

GLMMðcÞ = Conditional R2; ΔAIC = Change in Akaike Information Criterion.

https://doi.org/10.1371/journal.pone.0230274.t004

PLOS ONE Dengue importation into Europe

PLOS ONE | https://doi.org/10.1371/journal.pone.0230274 March 12, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0230274.g005
https://doi.org/10.1371/journal.pone.0230274.t004
https://doi.org/10.1371/journal.pone.0230274


measures to quantify the influence of connection topology and the dynamical processes of the

network to influence the importation of dengue [24]. We applied two different network analy-

sis modelling approach, to quantify the unique contributions of each topological descriptor to

dengue importation. The first approach incorporates network autocorrelation from the source

country’s centrality measures, within the GLMM framework of the connectivity indices. The

addition of the centrality measures within the modeling framework addresses the issue of

covariance driven by the network structure. All the network descriptors were significant pre-

dictors of dengue importation, however the combined effect of degree and betweenness cen-

trality were the most influential. This result suggests that source countries that are highly

connected (having multiple air routes into Europe) and act as connecting links to others coun-

tries (large airport hubs connecting other countries), intuitively have higher transport and

importation potential, as they have the capacities to quickly connect with the wider network.

The second approach investigates if there is evidence of a correlation between the centrality

measures of a destination country and its propensity to receive an imported case. We applied

this approach as a valuable measure of a direct relationship between the air transport network

structure and dengue importation into Europe [25]. Similar to the above results, all the net-

work metrics were strong predictors of the variation in dengue importation. However, the

eigenvector centrality, was the most fitting single predictor, explaining over 70% variance in

dengue importation. These results suggest that the risk of dengue importation for a country

(in Europe) can be largely explained by its position in the air transport network. Meaning

countries have higher tendency for an imported case as a result of having more direct ‘one

hop’ connections with high passengers traffic (as measured by degree centrality); having large

airport hubs, bridging other countries (betweenness centrality); being effectively closer to

other countries because of large passenger traffic (closeness centrality); and having multiple

direct and indirect connections to other higher connected countries (eigenvector centrality).

Overall, these results are particularly valuable in identifying countries in Europe that needs to

prioritize investment in real-time surveillance systems, as a health security measure [35, 61],

due to their increase propensity to receive an imported case.

Although our study was focused on the early stages of transport and introduction, we

understand that the risk assessment of receptivity for dengue in European countries with

established vector presence is essential. In general, most of Europe is considered unsuitable for

the autochthonous transmission of dengue, as the established presence of the main vector (i.e.

Aedes aegypti) is currently limited to the far eastern part of Europe, around the Black Sea [64,

65]. However, with an established presence of Ae. aegypti in Madeira (an autonomous region

of Portugal), its recent introduction in the Netherlands, and the extending spread of Aedes
albopictus on the continental, the risk of receptivity, establishment and autochthonous trans-

mission is increasing [66, 67]. This risk was not considered in our study, as a larger panel of

variables (which was not available to us at this time) would be required to adequately capture

the interactions between the temporal and spatial dynamics of the vector population, ecologi-

cal and climatic factors favoring autochthonous transmission and establishment. Nonetheless,

we believe that the connectivity indices discussed here as well as the methodological approach

provides a valuable way to assess importation risk, which can be easily expanded to model the

risk of autochthonous transmission and establishment in areas in Europe with vector presence

and favorable conditions. Likewise, in the context of the European region, where dengue is not

endemic, our approach is highly relevant for countries with high passengers’ traffic, to assess

travel routes with higher risk of importation. Thereby providing useful information to help

public health managers and decision-makers to plan resources for improve detection and

prompt response to prevent and control the introduction of cases. We do believe that dengue
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surveillance efforts, targeted at the introductory pathways would yield great benefits for Euro-

pean countries.

In summary, our paper presents a refined approach to the modelling of a network-mediated

epidemic for dengue fever. The connectivity indices presented here captures the variation in

source strength, transport, and importation potential, by accounting for other mediating

socio-economic and anthropogenic factors. These indices are an amenable representation of

real-world risk factors but offer a different approach for analyzing the connectivity dynamics

of network-mediated importation of dengue. Our analysis went further to characterize the role

of the air transport network topology in the dynamics of dengue importation into Europe. By

investigating the network autocorrelations influencing transport potential from source coun-

tries and the network positioning of the destination country as a predictor of importation. Our

analyses show that the connectivity indices and dynamical processes of the air transport net-

work are strong predictors of dengue importation in Europe. Therefore, the network connec-

tivity modelling approach could be useful in predicting source countries, importation patterns

and destination countries with greater risk of dengue. Thereby, allowing for preemptive strate-

gies to mitigate the impacts of imported cases in a timely, accurate and cost-effective manner

[62, 63]. Finally, this modeling approach could serve as a pivotal prerequisite for the develop-

ment of an early warning surveillance system to monitor and forecast the spread of dengue

fever.
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