70 research outputs found

    Family network of children with special health needs: implications for Nursing

    Get PDF
    OBJECTIVE: to describe appropriate sources and resources for caregivers of children with special health needs in the community. METHOD: A qualitative study that used the creativity and sensitivity dynamics speaking map, part of the sensitive creative method, involving 11 caregivers of children with special health needs who are assisted in a university hospital located in the South of Brazil. RESULTS: the maps graphically represented through the genogram and ecomap showed that the caregiving women consistently and regularly use the resources of the internal and external family network; they eventually and irregularly access the community social network for physical and psychological support. CONCLUSION: the reclusive nature of care for these children inside the family circle contributes to their social invisibility. Based on this new information, it is recommended that Nursing participate in the care that is focused on these children's families, with particular attention to their socio-cultural conditions

    Nature futures for the urban century : Integrating multiple values into urban management

    Get PDF
    There is an emerging consensus that the health of the planet depends on the coexistence between rapidly growing cities and the natural world. One strategy for guiding cities towards sustainability is to facilitate a planning process based on positive visions for urban systems among actors and stakeholders. This paper presents the Urban Nature Futures Framework (UNFF), a framework for scenario building for cities that is based on three Nature Futures perspectives: Nature for Nature, Nature for Society, and Nature as Culture. Our framework engages stakeholders with envisioning the three Nature Futures perspectives through four components using participatory methods and quantitative models: identification of the socio-ecological feedbacks in cities, assessment of indirect impacts of cities on biodiversity, development of multi-scale indicators, and development of scenarios. Stakeholders in cities may use this framework to explore different options for integrating nature in its various manifestations within urban areas and to assess how different community preferences result in various cityscapes and distribution of associated benefits from nature among urban dwellers across multiple scales

    Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wild peanut species (<it>Arachis </it>spp.) are a rich source of new alleles for peanut improvement. Plant transcriptome analysis under specific experimental conditions helps the understanding of cellular processes related, for instance, to development, stress response, and crop yield. The validation of these studies has been generally accomplished by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) which requires normalization of mRNA levels among samples. This can be achieved by comparing the expression ratio between a gene of interest and a reference gene which is constitutively expressed. Nowadays there is a lack of appropriate reference genes for both wild and cultivated <it>Arachis</it>. The identification of such genes would allow a consistent analysis of qRT-PCR data and speed up candidate gene validation in peanut.</p> <p>Results</p> <p>A set of ten reference genes were analyzed in four <it>Arachis </it>species (<it>A. magna</it>; <it>A. duranensis</it>; <it>A. stenosperma </it>and <it>A. hypogaea</it>) subjected to biotic (root-knot nematode and leaf spot fungus) and abiotic (drought) stresses, in two distinct plant organs (roots and leaves). By the use of three programs (GeNorm, NormFinder and BestKeeper) and taking into account the entire dataset, five of these ten genes, <it>ACT1 </it>(actin depolymerizing factor-like protein), <it>UBI1 </it>(polyubiquitin), <it>GAPDH </it>(glyceraldehyde-3-phosphate dehydrogenase), <it>60S </it>(60S ribosomal protein L10) and <it>UBI2 </it>(ubiquitin/ribosomal protein S27a) emerged as top reference genes, with their stability varying in eight subsets. The former three genes were the most stable across all species, organs and treatments studied.</p> <p>Conclusions</p> <p>This first in-depth study of reference genes validation in wild <it>Arachis </it>species will allow the use of specific combinations of secure and stable reference genes in qRT-PCR assays. The use of these appropriate references characterized here should improve the accuracy and reliability of gene expression analysis in both wild and cultivated Arachis and contribute for the better understanding of gene expression in, for instance, stress tolerance/resistance mechanisms in plants.</p

    Mucopolysaccharidosis I, II, and VI: Brief review and guidelines for treatment

    Get PDF
    Mucopolysaccharidoses (MPS) are rare genetic diseases caused by the deficiency of one of the lysosomal enzymes involved in the glycosaminoglycan (GAG) breakdown pathway. This metabolic block leads to the accumulation of GAG in various organs and tissues of the affected patients, resulting in a multisystemic clinical picture, sometimes including cognitive impairment. Until the beginning of the XXI century, treatment was mainly supportive. Bone marrow transplantation improved the natural course of the disease in some types of MPS, but the morbidity and mortality restricted its use to selected cases. The identification of the genes involved, the new molecular biology tools and the availability of animal models made it possible to develop specific enzyme replacement therapies (ERT) for these diseases. At present, a great number of Brazilian medical centers from all regions of the country have experience with ERT for MPS I, II, and VI, acquired not only through patient treatment but also in clinical trials. Taking the three types of MPS together, over 200 patients have been treated with ERT in our country. This document summarizes the experience of the professionals involved, along with the data available in the international literature, bringing together and harmonizing the information available on the management of these severe and progressive diseases, thus disclosing new prospects for Brazilian patients affected by these conditions

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    corecore