3,517 research outputs found

    Clonal human fetal ventral mesencephalic dopaminergic neuron precursors for cell therapy research

    Get PDF
    A major challenge for further development of drug screening procedures, cell replacement therapies and developmental studies is the identification of expandable human stem cells able to generate the cell types needed. We have previously reported the generation of an immortalized polyclonal neural stem cell (NSC) line derived from the human fetal ventral mesencephalon (hVM1). This line has been biochemically, genetically, immunocytochemically and electrophysiologically characterized to document its usefulness as a model system for the generation of A9 dopaminergic neurons (DAn). Long-term in vivo transplantation studies in parkinsonian rats showed that the grafts do not mature evenly. We reasoned that diverse clones in the hVM1 line might have different abilities to differentiate. In the present study, we have analyzed 9 hVM1 clones selected on the basis of their TH generation potential and, based on the number of v-myc copies, v-myc down-regulation after in vitro differentiation, in vivo cell cycle exit, TH+ neuron generation and expression of a neuronal mature marker (hNSE), we selected two clones for further in vivo PD cell replacement studies. The conclusion is that homogeneity and clonality of characterized NSCs allow transplantation of cells with controlled properties, which should help in the design of long-term in vivo experimentsThis work was supported by grants from the Spanish Ministry of Economy and Competitiveness (formerly Science and Innovation; PLE2009-0101, SAF2010-17167), Comunidad AutĂłnoma Madrid (S2011-BMD-2336), Instituto Salud Carlos III (RETICS TerCel, RD06/0010/0009) and European Union (Excell, NMP4-SL-2008-214706). This work was also supported by an institutional grant from Foundation RamĂłn Areces to the Center of Molecular Biology Severo Ocho

    Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: results from a randomized controlled trial

    Get PDF
    BackgroundHypertension can be prevented by adopting healthy dietary patterns. Our aim was to assess the 4-year effect on blood pressure (BP) control of a randomized feeding trial promoting the traditional Mediterranean dietary pattern.MethodsThe PREDIMED primary prevention trial is a randomized, single-blinded, controlled trial conducted in Spanish primary healthcare centers. We recruited 7,447 men (aged 55 to 80 years) and women (aged 60 to 80 years) who had high risk for cardiovascular disease. Participants were assigned to a control group or to one of two Mediterranean diets. The control group received education on following a low-fat diet, while the groups on Mediterranean diets received nutritional education and also free foods; either extra virgin olive oil, or nuts. Trained personnel measured participants’ BP at baseline and once yearly during a 4-year follow-up. We used generalized estimating equations to assess the differences between groups during the follow-up.ResultsThe percentage of participants with controlled BP increased in all three intervention groups (P-value for within-group changes: P<0.001). Participants allocated to either of the two Mediterranean diet groups had significantly lower diastolic BP than the participants in the control group (−1.53 mmHg (95% confidence interval (CI) −2.01 to −1.04) for the Mediterranean diet supplemented with extra virgin olive oil, and −0.65 mmHg (95% CI -1.15 to −0.15) mmHg for the Mediterranean diet supplemented with nuts). No between-group differences in changes of systolic BP were seen.ConclusionsBoth the traditional Mediterranean diet and a low-fat diet exerted beneficial effects on BP and could be part of advice to patients for controlling BP. However, we found lower values of diastolic BP in the two groups promoting the Mediterranean diet with extra virgin olive oil or with nuts than in the control group.Trial registrationCurrent Controlled Trials ISRCTN3573963

    Development and characterization of a microfluidic model of the tumour microenvironment

    Get PDF
    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening

    UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy

    Get PDF
    BACKGROUND: The impact of thymidylate synthase (TYMS) and UDP-glucoronosyltransferase 1A (UGT1A) germline polymorphisms on the outcome of colorectal cancer (CRC) patients treated with irinotecan plus 5-fluorouracil (irinotecan/5FU) is still controversial. Our objective was to define a genetic-based algorithm to select patients to be treated with irinotecan/5FU. METHODS: Genotyping of TYMS (5'TRP and 3'UTR), UGT1A1*28, UGT1A9*22 and UGT1A7*3 was performed in 149 metastatic CRC patients treated with irinotecan/5FU as first-line chemotherapy enrolled in a randomised phase 3 study. Their association with response, toxicity and survival was investigated by univariate and multivariate statistical analysis. RESULTS: TYMS 3TRP/3TRP genotype was the only independent predictor of tumour response (OR=5.87, 95% confidence interval (CI)=1.68-20.45; P=0.005). UGT1A1*28/*28 was predictive for haematologic toxicity (OR=6.27, 95% CI=1.09-36.12; P=0.04), specifically for neutropenia alone (OR=6.40, 95% CI=1.11-37.03; P=0.038) or together with diarrhoea (OR=18.87, 95% CI=2.14-166.67; P=0.008). UGT1A9*1/*1 was associated with non-haematologic toxicity (OR=2.70, 95% CI=1.07-6.82; P=0.035). Haplotype VII (all non-favourable alleles) was associated with non-haematologic toxicity (OR=2.11, 95% CI-1.12-3.98; P-0.02). CONCLUSION: TYMS and UGT1A polymorphisms influence on tumour response and toxicities derived from irinotecan/5FU treatment in CRC patients. A genetic-based algorithm to optimise treatment individualisation is proposed. British Journal of Cancer (2010) 103, 581-589. doi:10.1038/sj.bjc.6605776 www.bjcancer.com Published online 13 July 2010 (C) 2010 Cancer Research U

    Modification and re-validation of the ethyl acetate-based multi-residue method for pesticides in produce

    Get PDF
    The ethyl acetate-based multi-residue method for determination of pesticide residues in produce has been modified for gas chromatographic (GC) analysis by implementation of dispersive solid-phase extraction (using primary–secondary amine and graphitized carbon black) and large-volume (20 ΌL) injection. The same extract, before clean-up and after a change of solvent, was also analyzed by liquid chromatography with tandem mass spectrometry (LC–MS–MS). All aspects related to sample preparation were re-assessed with regard to ease and speed of the analysis. The principle of the extraction procedure (solvent, salt) was not changed, to avoid the possibility invalidating data acquired over past decades. The modifications were made with techniques currently commonly applied in routine laboratories, GC–MS and LC–MS–MS, in mind. The modified method enables processing (from homogenization until final extracts for both GC and LC) of 30 samples per eight hours per person. Limits of quantification (LOQs) of 0.01 mg kg−1 were achieved with both GC–MS (full-scan acquisition, 10 mg matrix equivalent injected) and LC–MS–MS (2 mg injected) for most of the pesticides. Validation data for 341 pesticides and degradation products are presented. A compilation of analytical quality-control data for pesticides routinely analyzed by GC–MS (135 compounds) and LC–MS–MS (136 compounds) in over 100 different matrices, obtained over a period of 15 months, are also presented and discussed. At the 0.05 mg kg−1 level acceptable recoveries were obtained for 93% (GC–MS) and 92% (LC–MS–MS) of pesticide–matrix combinations

    Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women

    Get PDF
    The role of molecular signals from the microbiome and their coordinated interactions with those from the host in hepatic steatosis – notably in obese patients and as risk factors for insulin resistance and atherosclerosis – needs to be understood. We reveal molecular networks linking gut microbiome and host phenome to hepatic steatosis in a cohort of non diabetic obese women. Steatotic patients had low microbial gene richness and increased genetic potential for processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid (AAA and BCAA) metabolism. We demonstrated that faecal microbiota transplants and chronic treatment with phenylacetic acid (PAA), a microbial product of AAA metabolism, successfully trigger steatosis and BCAA metabolism. Molecular phenomic signatures were predictive (AUC = 87%) and consistent with the gut microbiome making an impact on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies

    Excessive TV viewing and cardiovascular disease risk factors in adolescents. The AVENA cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive television (TV) viewing might play an important role in the development of cardiovascular disease (CVD). The aim of this study was to examine the independent associations between TV viewing and CVD risk factors in adolescents.</p> <p>Methods</p> <p>A sample of 425 adolescents, aged 13- to 18.5-year-old, was included in this study. Body mass index (BMI), waist circumference (WC), glucose, total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol, apolipoprotein (apo) A-1, apo B-100, and lipoprotein(a) levels were determined. A composite CVD risk score was computed based on age-, sex-, sexual maturation- and race-standardized triglycerides, HDL-cholesterol, LDL-cholesterol and glucose. TV viewing was self-reported.</p> <p>Results</p> <p>Two hundred and twenty-five adolescents (53%) who spent >3 hrs/day watching TV were considered as the "high TV viewing" group. Ninety-nine adolescents (23%) from the total sample were classified as overweight according to International age- and sex-specific BMI values. The high TV viewing group had significantly less favorable values of HDL-cholesterol, glucose, apo A1 and CVD score, independent of age, sex, sexual maturation, race and weight status. There was a significant interaction effect of TV viewing × weight status (P = 0.002) on WC, and the negative influence of TV viewing on WC persisted in the overweight group (P = 0.031) but was attenuated in non-overweight adolescents (P > 0.05).</p> <p>Conclusion</p> <p>Excessive TV viewing seems to be related to an unfavorable CVD risk factors profile in adolescence. Reducing TV viewing in overweight adolescents might be beneficial to decrease abdominal body fat.</p

    Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks

    Get PDF
    The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described
    • 

    corecore