584 research outputs found

    Assessment of the corneal collagen organization after chemical burn using second harmonic generation microscopy

    Get PDF
    The organization of the corneal stoma is modified due to different factors, including pathology, surgery or external damage. Here the changes in the organization of the corneal collagen fibers during natural healing after chemical burn are investigated using second harmonic generation (SHG) imaging. Moreover, the structure tensor (ST) was used as an objective tool for morphological analyses at different time points after burn (up to 6 months). Unlike control corneas that showed a regular distribution, the collagen pattern at 1 month of burn presented a non-organized arrangement. SHG signal levels noticeably decreased and individual fibers were hardly visible. Over time, the healing process led to a progressive re-organization of the fibers that could be quantified through the ST. At 6 months, the stroma distribution reached values similar to those of control eyes and a dominant direction of the fibers re-appeared. The present results show that SHG microscopy imaging combined with the ST method is able to objectively monitor the temporal regeneration of the corneal organization after chemical burn. Future implementations of this approach into clinically adapted devices would help to diagnose and quantify corneal changes, not only due to chemical damages, but also as a result of disease or surgical procedures

    Ecosystem-bedrock interaction changes nutrient compartmentalization during early oxidative weathering

    Full text link
    Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.Comment: 41 pages (MS, SI and Data), 16 figures (MS and SI), 6 tables (SI and Data). Journal article manuscrip

    a cross-sectional study

    Get PDF
    Objectives We determined the seroprevalence and correlates of Toxoplasma gondii infection in pregnant women in Aguascalientes City, Mexico. Design A cross-sectional survey. Setting Pregnant women were enrolled in the central Mexican city of Aguascalientes. Participants We studied 338 pregnant women who attended prenatal care in 3 public health centres. Primary and secondary outcome measures Women were examined for IgG/IgM antibodies to T. gondii by using commercially available enzyme immunoassays, and an avidity test. Multiple analyses were used to determine the association of T. gondii seropositivity with the characteristics of the pregnant women. Results Of the 338 pregnant women studied, 21 (6.2%) had IgG antibodies to T. gondii, and 1 (4.8%) of them was also positive for IgM antibodies to T. gondii. Avidity of IgG antibodies to T. gondii was high in the IgM-positive sample. Logistic regression analysis of sociodemographic, behavioural and housing variables showed that T. gondii seropositivity was associated with white ethnicity (OR=149.4; 95% CI 10.8 to 2054.1; p<0.01), not washing hands before eating (OR=6.41; 95% CI 1.73 to 23.6; p=0.005) and use of latrine (OR=37.6; 95% CI 4.63 to 306.31; p=0.001). Conclusions Results demonstrate that pregnant women in Aguascalientes City have a low seroprevalence of T. gondii infection. However, this low prevalence indicates that most pregnant women are at risk for a primary infection. Factors associated with T. gondii exposure found in this study, including food hygiene, may be useful to determine preventive measures against T. gondii infection and its sequelae

    Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions

    Get PDF
    The main phenological stages (budburst, flowering, veraison, and ripeness) of 53 Spanish minority varieties were studied to determine their potential to help winegrowers adapt to climate change conditions. In total, 43 varieties were studied in the same location in Spain (Alcalá de Henares, in the Madrid region) and 10 varieties in 5 other regions (Galicia, Navarre, Catalonia, Extremadura, and Andalusia). Other traits of agronomic and oenological interest, such as yield and acidity, were also monitored. The results allow for the grouping of the varieties into several clusters according to the time of ripeness (very early—only for red varieties—and early, intermediate, and late, for both red and white varieties) and yield (high, medium, and low). The total acidity in the grape juice ranged from 3 to 11 g of tartaric acid/L. The average temperatures were higher (up to 3–4 °C during summer) compared to historical averages during the 1957–2021 time period. Advanced phenology phases and reduced acidity are regarded as negative effects of climate change for winegrowing practices. Since some minority varieties showed late or intermediate ripening, high acidity, and high (1 Kg/shoot) or medium (0.5 Kg/shoot) yield, our findings suggest that they may be cultivated in the coming years by winegrowers as an approach to mitigate climate change effects.info:eu-repo/semantics/publishedVersio

    Causes of hOCT1-dependent cholangiocarcinoma resistance to sorafenib and sensitization by tumor-selective gene therapy

    Get PDF
    Although the multi-tyrosine kinase inhibitor sorafenib is useful in the treatment of several cancers, cholangiocarcinoma (CCA) is refractory to this drug. Among other mechanisms of chemoresistance, impaired uptake through human organic cation transporter type 1 (hOCT1) (gene SLC22A1) has been suggested. Here we have investigated the events accounting for this phenotypic characteristic and have evaluated the interest of selective gene therapy strategies to overcome this limitation. Gene expression and DNA methylation of SLC22A1 were analyzed using intrahepatic (iCCA) and extrahepatic (eCCA) biopsies (Copenhagen and Salamanca cohorts; n = 132) and The Cancer Genome Atlas (TCGA)-CHOL (n = 36). Decreased hOCT1 mRNA correlated with hypermethylation status of the SLC22A1 promoter. Treatment of CCA cells with decitabine (demethylating agent) or butyrate (histone deacetylase inhibitor) restored hOCT1 expression and increased sorafenib uptake. MicroRNAs able to induce hOCT1 mRNA decay were analyzed in paired samples of TCGA-CHOL (n = 9) and Copenhagen (n = 57) cohorts. Consistent up-regulation in tumor tissue was found for miR-141 and miR-330. High proportion of aberrant hOCT1 mRNA splicing in CCA was also seen. Lentiviral-mediated transduction of eCCA (EGI-1 and TFK-1) and iCCA (HuCCT1) cells with hOCT1 enhanced sorafenib uptake and cytotoxic effects. In chemically induced CCA in rats, reduced rOct1 expression was accompanied by impaired sorafenib uptake. In xenograft models of eCCA cells implanted in mouse liver, poor response to sorafenib was observed. However, tumor growth was markedly reduced by cotreatment with sorafenib and adenoviral vectors encoding hOCT1 under the control of the BIRC5 promoter, a gene highly up-regulated in CCA. Conclusion: The reason for impaired hOCT1-mediated sorafenib uptake by CCA is multifactorial. Gene therapy capable of selectively inducing hOCT1 in tumor cells can be considered a potentially useful chemosensitization strategy to improve the response of CCA to sorafenib

    Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy- Like Cellular Phenotype

    Get PDF
    ABSTRACT Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases. IMPORTANCE The Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein with multiple functions. Proteomic studies have identified the cellular nuclear membrane component emerin as a potential VP24 interactor. Here, we demonstrate that VP24 not only interacts with emerin but also with lamin A/C and lamin B, prompting nuclear membrane disruption. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, VP24 also promotes the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), leading to repression of the BAF-regulated CSF1 gene. Finally, we show that EBOV infection also results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. These results reveal novel activities of EBOV VP24 protein, resulting in a cell phenotype similar to that of most laminopathies, with potential impact on EBOV replication

    Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal expression of Rho-GTPases has been reported in several human cancers. However, the expression of these proteins in cervical cancer has been poorly investigated. In this study we analyzed the expression of the GTPases Rac1, RhoA, Cdc42, and the Rho-GEFs, Tiam1 and beta-Pix, in cervical pre-malignant lesions and cervical cancer cell lines.</p> <p>Methods</p> <p>Protein expression was analyzed by immunochemistry on 102 cervical paraffin-embedded biopsies: 20 without Squamous Intraepithelial Lesions (SIL), 51 Low- grade SIL, and 31 High-grade SIL; and in cervical cancer cell lines C33A and SiHa, and non-tumorigenic HaCat cells. Nuclear localization of Rac1 in HaCat, C33A and SiHa cells was assessed by cellular fractionation and Western blotting, in the presence or not of a chemical Rac1 inhibitor (NSC23766).</p> <p>Results</p> <p>Immunoreacivity for Rac1, RhoA, Tiam1 and beta-Pix was stronger in L-SIL and H-SIL, compared to samples without SIL, and it was significantly associated with the histological diagnosis. Nuclear expression of Rac1 was observed in 52.9% L-SIL and 48.4% H-SIL, but not in samples without SIL. Rac1 was found in the nucleus of C33A and SiHa cells but not in HaCat cells. Chemical inhibition of Rac1 resulted in reduced cell proliferation in HaCat, C33A and SiHa cells.</p> <p>Conclusion</p> <p>Rac1 is expressed in the nucleus of epithelial cells in SILs and cervical cancer cell lines, and chemical inhibition of Rac1 reduces cellular proliferation. Further studies are needed to better understand the role of Rho-GTPases in cervical cancer progression.</p

    Comparison of seven prognostic tools to identify low-risk pulmonary embolism in patients aged <50 years

    Get PDF
    publishersversionPeer reviewe
    corecore