1,299 research outputs found

    The Kaon-Photoproduction Of Nucleons In The Quark Model

    Full text link
    In this paper, we develop a general framework to study the meson-photoproductions of nucleons in the chiral quark model. The S and U channel resonance contributions are expressed in terms of the Chew-Goldberger-Low-Nambu (CGLN) amplitudes. The kaon-photoproduction processes, γp→K+Λ\gamma p\to K^+ \Lambda, γp→K+Σ0\gamma p\to K^+ \Sigma^0, and γp→K0Σ+\gamma p\to K^0\Sigma^+, are calculated. The initial results show that the quark model provides a much improved description of the reaction mechanism for the kaon-photoproductions of the nucleon with less parameters than the traditional phenomenological approaches.Comment: 25 pages, 9 postscript figures can be obtained from the author

    Integer and half-integer flux-quantum transitions in a niobium/iron-pnictide loop

    Full text link
    The recent discovery of iron-based superconductors challenges the existing paradigm of high-temperature superconductivity. Owing to their unusual multi-orbital band structure, magnetism, and electron correlation, theories propose a unique sign reversed s-wave pairing state, with the order parameter changing sign between the electron and hole Fermi pockets. However, because of the complex Fermi surface topology and material related issues, the predicted sign reversal remains unconfirmed. Here we report a novel phase-sensitive technique for probing unconventional pairing symmetry in the polycrystalline iron-pnictides. Through the observation of both integer and half-integer flux-quantum transitions in composite niobium/iron-pnictide loops, we provide the first phase-sensitive evidence of the sign change of the order parameter in NdFeAsO0.88F0.12, lending strong support for microscopic models predicting unconventional s-wave pairing symmetry. These findings have important implications on the mechanism of pnictide superconductivity, and lay the groundwork for future studies of new physics arising from the exotic order in the FeAs-based superconductors.Comment: 23 pages, including 4 figures and supplementary informatio

    Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer

    Get PDF
    Introduction Aromatase inhibitors (AIs) are a vital component of estrogen receptor positive (ER+) breast cancer treatment. De novo and acquired resistance, however, is common. The aims of this study were to relate patterns of copy number aberrations to molecular and proliferative response to AIs, to study differences in the patterns of copy number aberrations between breast cancer samples pre- and post-AI neoadjuvant therapy, and to identify putative biomarkers for resistance to neoadjuvant AI therapy using an integrative analysis approach. Methods Samples from 84 patients derived from two neoadjuvant AI therapy trials were subjected to copy number profiling by microarray-based comparative genomic hybridisation (aCGH, n = 84), gene expression profiling (n = 47), matched pre- and post-AI aCGH (n = 19 pairs) and Ki67-based AI-response analysis (n = 39). Results Integrative analysis of these datasets identified a set of nine genes that, when amplified, were associated with a poor response to AIs, and were significantly overexpressed when amplified, including CHKA, LRP5 and SAPS3. Functional validation in vitro, using cell lines with and without amplification of these genes (SUM44, MDA-MB134-VI, T47D and MCF7) and a model of acquired AI-resistance (MCF7-LTED) identified CHKA as a gene that when amplified modulates estrogen receptor (ER)-driven proliferation, ER/estrogen response element (ERE) transactivation, expression of ER-regulated genes and phosphorylation of V-AKT murine thymoma viral oncogene homolog 1 (AKT1). Conclusions These data provide a rationale for investigation of the role of CHKA in further models of de novo and acquired resistance to AIs, and provide proof of concept that integrative genomic analyses can identify biologically relevant modulators of AI response

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Very Strong Emission-Line Galaxies in the WISP Survey and Implications for High-Redshift Galaxies

    Get PDF
    The WFC3 Infrared Spectroscopic Parallel Survey (WISP) uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the Universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin^2 area we analyzed so far. After estimating the AGN fraction in the sample, we show that this population consists of young and low-mass starbursts with higher specific star formation rates than normal star-forming galaxies at any redshift. After spectroscopic follow-up of one of these galaxies with Keck/LRIS, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12+Log(O/H)= 7.47 +- 0.11. The nebular emission-lines can substantially affect the broadband flux density with a median brightening of 0.3 mag, with examples producing brightening of up to 1 mag. The presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z ~ 8 dropout surveys. In order to effectively remove low redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their SED. Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies. Therefore the contribution of emission lines should be systematically taken into account in SED fitting of star-forming galaxies at all redshifts.Comment: Accepted for publication in the Astrophysical Journal. 15 pages, 13 figure

    The WFC3 Infrared Spectroscopic Parallel (WISP) Survey

    Get PDF
    We present the WFC3 Infrared Spectroscopic Parallel (WISP) Survey. WISP is obtaining slitless, near-infrared grism spectroscopy of ~ 90 independent, high-latitude fields by observing in the pure parallel mode with Wide Field Camera-3 on the Hubble Space Telescope for a total of ~ 250 orbits. Spectra are obtained with the G102 (lambda=0.8-1.17 microns, R ~ 210) and G141 grisms (lambda=1.11-1.67 microns, R ~ 130), together with direct imaging in the J- and H-bands (F110W and F140W, respectively). In the present paper, we present the first results from 19 WISP fields, covering approximately 63 square arc minutes. For typical exposure times (~ 6400 sec in G102 and ~ 2700 sec in G141), we reach 5-sigma detection limits for emission lines of 5 x 10^(-17) ergs s^(-1) cm^(-2) for compact objects. Typical direct imaging 5sigma-limits are 26.8 and 25.0 magnitudes (AB) in F110W and F140W, respectively. Restricting ourselves to the lines measured with highest confidence, we present a list of 328 emission lines, in 229 objects, in a redshift range 0.3 < z < 3. The single-line emitters are likely to be a mix of Halpha and [OIII]5007,4959 A, with Halpha predominating. The overall surface density of high-confidence emission-line objects in our sample is approximately 4 per arcmin^(2).These first fields show high equivalent width sources, AGN, and post starburst galaxies. The median observed star formation rate of our Halpha selected sample is 4 Msol/year. At intermediate redshifts, we detect emission lines in galaxies as faint as H_140 ~ 25, or M_R < -19, and are sensitive to star formation rates down to less than 1 Msol/year. The slitless grisms on WFC3 provide a unique opportunity to study the spectral properties of galaxies much fainter than L* at the peak of the galaxy assembly epoch.Comment: 15 pages, 12 figures, submitted to Ap

    The SINS survey of z~2 galaxy kinematics: properties of the giant star forming clumps

    Full text link
    We have studied the properties of giant star forming clumps in five z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{\alpha}/[NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized, or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.Comment: accepted Astrophys. Journal, February 9, 201
    • …
    corecore