240 research outputs found

    Molecular evolution of RRM-containing proteins and glycine-rich RNA-binding proteins in plants

    Get PDF
    *Abstract*

*Background:*
In angiosperms, RNA-binding proteins with an RNA recognition motif (RRM)-type RNA interaction domain play an important role in developmental and environmental responses. Despite their pivotal role, a comprehensive analysis of their number and diversity has only been performed in _Arabidopsis_ so far.

*Results:*
Here we present a detailed phylogenetic analysis of RRM-containing proteins in plants, the red algae _Cyanidioschyzon merolae_ and cyanobacteria. We identified two major events during the diversification of the RRM in plants, one at the emergence of green plants, and the other at the water-to-land transition. We focused on proteins that combine a single RRM with a glycine-rich stretch, known as glycine-rich RNA-binding proteins (GRPs). We found that GRPs are present in cyanobacteria, however plant and cyanobacterial GRPs are not of monophyletic origin. We provide evidence that plant GRPs form a polyphyletic group.
 
*Conclusion:*
Our work provides insights into the origin of GRPs in plants. We determined that the RRM from plants and cyanobacteria do not have a common origin. We could also determine that the acquisition of the glycine-rich stretch has happened at least on three separate occasions during the evolution of GRPs. One event led to the emergence of cyanobacterial GRPs, while later acquisition events led to the emergence of GRPs in the green lineage. No GRPs were found in red or marine green algae. We found a subgroup of GRPs exclusive to land plants, and its appearance may be linked to challenges related to the water-to-land transition.
&#xa

    Arabidopsis thaliana GLYCINE RICH RNA‐BINDING PROTEIN 7 interaction with its iCLIP target LHCB1.1 correlates with changes in RNA stability and circadian oscillation

    Get PDF
    The importance of RNA‐binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non‐plant model organisms. Here, we characterize binding of the circadian clock‐regulated Arabidopsis thaliana GLYCINE‐RICH RNA‐BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual‐nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7‐GFP that were not recovered in plants expressing an RNA‐binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U‐rich motif. Among the bound RNAs, circadian clock‐regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll‐binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose‐dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half‐life was shorter compared to wild‐type plants whereas in atgrp7 mutant plants, the half‐life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    AMPK - Activated Protein Kinase and its Role in Energy Metabolism of the Heart

    Get PDF
    Adenosine monophosphate – activated kinase (AMPK) plays a key role in the coordination of the heart’s anabolic and catabolic pathways. It induces a cellular cascade at the center of maintaining energy homeostasis in the cardiomyocytes.. The activated AMPK is a heterotrimeric protein, separated into a catalytic α - subunit (63kDa), a regulating β - subunit (38kDa) and a γ - subunit (38kDa), which is allosterically adjusted by adenosine triphosphate (ATP) and adenosine monophosphate (AMP). The actual binding of AMP to the γ – subunit is the step which activates AMPK

    Norms of public argumentation and the ideals of correctness and participation

    Get PDF
    Argumentation as the public exchange of reasons is widely thought to enhance deliberative interactions that generate and justify reasonable public policies. Adopting an argumentation-theoretic perspective, we survey the norms that should govern public argumentation and address some of the complexities that scholarly treatments have identified. Our focus is on norms associated with the ideals of correctness and participation as sources of a politically legitimate deliberative outcome. In principle, both ideals are mutually coherent. If the information needed for a correct deliberative outcome is distributed among agents, then maximising participation increases information diversity. But both ideals can also be in tension. If participants lack competence or are prone to biases, a correct deliberative outcome requires limiting participation. The central question for public argumentation, therefore, is how to strike a balance between both ideals. Rather than advocating a preferred normative framework, our main purpose is to illustrate the complexity of this theme

    Association of branched-chain amino acids with mortality-the Ludwigshafen Risk and Cardiovascular Health (LURIC) study

    Get PDF
    Branched-chain amino acids (BCAAs) are effectors ofmetabolic diseases, but their impact on mortality is largely unknown.We investigated the association of BCAA with risk factors and mortality in 2,236 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study using linear and Cox regression. Adiponectin, hemoglobin, C-peptide, hemoglobin A1c, and homoarginine showed the strongest association with BCAA concentration (all p < 0.001). During a median follow-up of 10.5 years, 715 participants died, including 450 cardiovascularrelated deaths. BCAA concentrations were inversely associated with the risk of all-cause and cardiovascular mortality (HR [95% CI] per 1-SD increase in log-BCAA: 0.75 [0.69–0.82] and 0.72 [0.65–0.80], respectively) after adjustment for potential confounders. BCAAs are directly associated with metabolic risk but inversely with mortality in persons with intermediate-to-high cardiovascular risk. Further studies are warranted to evaluate the diagnostic and therapeutic utility of BCAA in the context of cardiovascular diseases

    Fine-Tuning Cardiac Insulin-Like Growth Factor 1 Receptor Signaling to Promote Health and Longevity

    Get PDF
    Background: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial. Methods: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well. Results: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity. Conclusions: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults

    Adverse Drug Reactions in Children—A Systematic Review

    Get PDF
    Adverse drug reactions in children are an important public health problem. We have undertaken a systematic review of observational studies in children in three settings: causing admission to hospital, occurring during hospital stay and occurring in the community. We were particularly interested in understanding how ADRs might be better detected, assessed and avoided
    corecore