163 research outputs found

    Are Treatment Preferences Relevant in Response to Serotonergic Antidepressants and Cognitive-Behavioral Therapy in Depressed Primary Care Patients? Results from a Randomized Controlled Trial Including a Patients' Choice Arm

    Get PDF
    Background Little is known about the influence of depressed patients' preferences and expectations about treatments upon treatment outcome We investigated whether better clinical outcome in depressed primary care patients is associated with receiving their preferred treatment Methods Within a randomized placebo-controlled single-centre 10-week trial with 5 arms (sertraline, placebo, cognitive-behavioral group therapy, CBT-G, moderated self-help group control, treatment with sertraline or CBT-G according to patients' choice), outcomes for 145 primary care patients with mild-to-moderate depressive disorders according to DSM-IV criteria were investigated Preference for medication versus psychotherapy was assessed at screening using a single item Post-baseline difference scores for the Hamilton Depression Rating Scale (HAMD-17) were used to assess treatment outcome (mixed-model repeated-measures regression analysis) Results Depressed patients receiving their preferred treatment (n = 63), whether sertraline or CBT-G, responded significantly better than those who did not receive their preferred therapy (n = 54, p = 0 001) The difference in outcome between both groups was 8 0 points on the HAMD-17 for psychotherapy and 2 9 points on the HAMD-17 for treatment with antidepressants Results were not explained by differences in depression severity or dropout rates Conclusions Patients' relative preference for medication versus psychotherapy should be considered when offering a treatment because receiving the preferred treatment conveys an additional and clinically relevant benefit (HAMD-17 +2 9 points for drugs, +8 0 points for CBT-G) in outcome Copyright (C) 2010 S Karger AG Base

    Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Get PDF
    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing whole plastid genomes to find markers for evolutionary analyses is therefore particularly useful when overall genetic distances are low

    Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community

    Get PDF
    Development of cellulosic biofuels from non-food crops is currently an area of intense research interest. Tailoring depolymerizing enzymes to particular feedstocks and pretreatment conditions is one promising avenue of research in this area. Here we added a green-waste compost inoculum to switchgrass (Panicum virgatum) and simulated thermophilic composting in a bioreactor to select for a switchgrass-adapted community and to facilitate targeted discovery of glycoside hydrolases. Small-subunit (SSU) rRNA-based community profiles revealed that the microbial community changed dramatically between the initial and switchgrass-adapted compost (SAC) with some bacterial populations being enriched over 20-fold. We obtained 225 Mbp of 454-titanium pyrosequence data from the SAC community and conservatively identified 800 genes encoding glycoside hydrolase domains that were biased toward depolymerizing grass cell wall components. Of these, ∼10% were putative cellulases mostly belonging to families GH5 and GH9. We synthesized two SAC GH9 genes with codon optimization for heterologous expression in Escherichia coli and observed activity for one on carboxymethyl cellulose. The active GH9 enzyme has a temperature optimum of 50°C and pH range of 5.5 to 8 consistent with the composting conditions applied. We demonstrate that microbial communities adapt to switchgrass decomposition using simulated composting condition and that full-length genes can be identified from complex metagenomic sequence data, synthesized and expressed resulting in active enzyme

    Corona Health -- A Study- and Sensor-based Mobile App Platform Exploring Aspects of the COVID-19 Pandemic

    Get PDF
    Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures

    Impact of the first COVID lockdown on accident- and injury-related pediatric intensive care admissions in Germany - a multicenter study

    Get PDF
    Children’s and adolescents’ lives drastically changed during COVID lockdowns worldwide. To compare accident- and injury-related admissions to pediatric intensive care units (PICU) during the first German COVID lockdown with previous years, we conducted a retrospective multicenter study among 37 PICUs (21.5% of German PICU capacities). A total of 1444 admissions after accidents or injuries during the first lockdown period and matched periods of 2017–2019 were reported and standardized morbidity ratios (SMR) were calculated. Total PICU admissions due to accidents/injuries declined from an average of 366 to 346 (SMR 0.95 (CI 0.85–1.05)). Admissions with trauma increased from 196 to 212 (1.07 (0.93–1.23). Traffic accidents and school/kindergarten accidents decreased (0.77 (0.57–1.02 and 0.26 (0.05–0.75)), whereas household and leisure accidents increased (1.33 (1.06–1.66) and 1.34 (1.06–1.67)). Less neurosurgeries and more visceral surgeries were performed (0.69 (0.38–1.16) and 2.09 (1.19–3.39)). Non-accidental non-suicidal injuries declined (0.73 (0.42–1.17)). Suicide attempts increased in adolescent boys (1.38 (0.51–3.02)), but decreased in adolescent girls (0.56 (0.32–0.79)). In summary, changed trauma mechanisms entailed different surgeries compared to previous years. We found no evidence for an increase in child abuse cases requiring intensive care. The increase in suicide attempts among boys demands investigation

    A Phosphorylation Site Regulates Sorting of the Vesicular Acetylcholine Transporter to Dense Core Vesicles

    Get PDF
    Vesicular transport proteins package classical neurotransmitters for regulated exocytotic release, and localize to at least two distinct types of secretory vesicles. In PC12 cells, the vesicular acetylcholine transporter (VAChT) localizes preferentially to synaptic-like microvesicles (SLMVs), whereas the closely related vesicular monoamine transporters (VMATs) localize preferentially to large dense core vesicles (LDCVs). VAChT and the VMATs contain COOH-terminal, cytoplasmic dileucine motifs required for internalization from the plasma membrane. We now show that VAChT undergoes regulated phosphorylation by protein kinase C on a serine (Ser-480) five residues upstream of the dileucine motif. Replacement of Ser-480 by glutamate, to mimic the phosphorylation event, increases the localization of VAChT to LDCVs. Conversely, the VMATs contain two glutamates upstream of their dileucine-like motif, and replacement of these residues by alanine conversely reduces sorting to LDCVs. The results provide some of the first information about sequences involved in sorting to LDCVs. Since the location of the transporters determines which vesicles store classical neurotransmitters, a change in VAChT trafficking due to phosphorylation may also influence the mode of transmitter release

    Extensive microbial and functional diversity within the chicken cecal microbiome

    Get PDF
    Chickens are major source of food and protein worldwide. Feed conversion and the health of chickens relies on the largely unexplored complex microbial community that inhabits the chicken gut, including the ceca. We have carried out deep microbial community profiling of the microbiota in twenty cecal samples via 16S rRNA gene sequences and an in-depth metagenomics analysis of a single cecal microbiota. We recovered 699 phylotypes, over half of which appear to represent previously unknown species. We obtained 648,251 environmental gene tags (EGTs), the majority of which represent new species. These were binned into over two-dozen draft genomes, which included Campylobacter jejuni and Helicobacter pullorum. We found numerous polysaccharide- and oligosaccharide-degrading enzymes encoding within the metagenome, some of which appeared to be part of polysaccharide utilization systems with genetic evidence for the co-ordination of polysaccharide degradation with sugar transport and utilization. The cecal metagenome encodes several fermentation pathways leading to the production of short-chain fatty acids, including some with novel features. We found a dozen uptake hydrogenases encoded in the metagenome and speculate that these provide major hydrogen sinks within this microbial community and might explain the high abundance of several genera within this microbiome, including Campylobacter, Helicobacter and Megamonas

    Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    Get PDF
    Lignin is often the most difficult portion of plant biomass to degrade, with fungi generally thought to dominate during late stage decomposition. Lignin in feedstock plant material represents a barrier to more efficient plant biomass conversion and can also hinder enzymatic access to cellulose, which is critical for biofuels production. Tropical rain forest soils in Puerto Rico are characterized by frequent anoxic conditions and fluctuating redox, suggesting the presence of lignin-degrading organisms and mechanisms that are different from known fungal decomposers and oxygen-dependent enzyme activities. We explored microbial lignin-degraders by burying bio-traps containing lignin-amended and unamended biosep beads in the soil for 1, 4, 13 and 30 weeks. At each time point, phenol oxidase and peroxidase enzyme activity was found to be elevated in the lignin-amended versus the unamended beads, while cellulolytic enzyme activities were significantly depressed in lignin-amended beads. Quantitative PCR of bacterial communities showed more bacterial colonization in the lignin-amended compared to the unamended beads after one and four weeks, suggesting that the lignin supported increased bacterial abundance. The microbial community was analyzed by small subunit 16S ribosomal RNA genes using microarray (PhyloChip) and by high-throughput amplicon pyrosequencing based on universal primers targeting bacterial, archaeal, and eukaryotic communities. Community trends were significantly affected by time and the presence of lignin on the beads. Lignin-amended beads have higher relative abundances of representatives from the phyla Actinobacteria, Firmicutes, Acidobacteria and Proteobacteria compared to unamended beads. This study suggests that in low and fluctuating redox soils, bacteria could play a role in anaerobic lignin decomposition

    Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils

    Get PDF
    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)–0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter
    corecore