398 research outputs found
Re‐defining the virtual reality dental simulator: Demonstrating concurrent validity of clinically relevant assessment and feedback
Introduction
Virtual reality (VR) dental simulators are gaining momentum as a useful tool to educate dental students. To date, no VR dental simulator exercise has been designed which is capable of reliably providing validated, meaningful clinical feedback to dental students. This study aims to measure the concurrent validity of the assessment, and the provision of qualitative feedback, pertaining to cavity preparations by VR dental simulators.
Methods
A cavity preparation exercise was created on a VR dental simulator, and assessment criteria for cavity preparations were developed. The exercise was performed 10 times in order to demonstrate a range of performances and for each, the simulator feedback was recorded. The exercises were subsequently three‐dimensionally printed and 12 clinical teachers were asked to assess the preparations according to the same criteria. Inter‐rater reliability (IRR) between clinical teachers was measured using a free‐marginal multirater kappa value. Clinical teacher assessment responses were compared with the VR simulator responses and percentage agreements calculated.
Results
IRR values for each exercise ranged from 0.39‐0.77 (69.39‐88.48%). The assessment of smoothness (κfree0.58, 78.79%) and ability to follow the outline (κfree0.56, 77.88%) demonstrated highest agreement between clinical teachers, whilst the assessment of undercut (κfree0.15, 57.58%) and depth (κfree 0.28, 64.09%) had the lowest agreement. The modal percentage agreement between clinical teachers and the VR simulator was, on average, 78% across all exercises.
Conclusion
The results of this study demonstrate that it is possible to provide reliable and clinically relevant qualitative feedback via a VR dental simulator. Further research should look to employ this technique across a broader range of exercises that help to develop other complex operative dental skills
Two-dimensional limit of exchange-correlation energy functional approximations in density functional theory
We investigate the behavior of three-dimensional (3D) exchange-correlation
energy functional approximations of density functional theory in anisotropic
systems with two-dimensional (2D) character. Using two simple models, quasi-2D
electron gas and two-electron quantum dot, we show a {\it fundamental
limitation} of the local density approximation (LDA), and its semi-local
extensions, generalized gradient approximation (GGA) and meta-GGA (MGGA), the
most widely used forms of which are worse than the LDA in the strong 2D limit.
The origin of these shortcomings is in the inability of the local (LDA) and
semi-local (GGA/MGGA) approximations to describe systems with 2D character in
which the nature of the exchange-correlation hole is very nonlocal. Nonlocal
functionals provide an alternative approach, and explicitly the average density
approximation (ADA) is shown to be remarkably accurate for the quasi-2D
electron gas system. Our study is not only relevant for understanding of the
functionals but also practical applications to semiconductor quantum structures
and materials such as graphite and metal surfaces. We also comment on the
implication of our findings to the practical device simulations based on the
(semi-)local density functional method.Comment: 21 pages including 9 figures, to be published in Phys. Rev.
Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia
Background: Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. Results: Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. Conclusions: The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.Fil: Kazimírová, Mária. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Hamšíková, Zuzana. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Spitalská, Eva. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Minichová, Lenka. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; EslovaquiaFil: Mahríková, Lenka. Slovak Academy of Sciences. Institute of Zoology; EslovaquiaFil: Caban, Radoslav. Široká ; EslovaquiaFil: Sprong, Hein. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Fonville, Manoj. National Institute for Public Health and Environment.Laboratory for Zoonoses and Environmental Microbiology; Países BajosFil: Schnittger, Leonhard. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Patobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kocianová, Elena. Slovak Academy of Sciences. Institute of Virology. Biomedical Research Center,; Eslovaqui
Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host
Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV
An Overview of the 2014 ALMA Long Baseline Campaign
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to
make accurate images with resolutions of tens of milliarcseconds, which at
submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop
and test this capability, a Long Baseline Campaign (LBC) was carried out from
September to late November 2014, culminating in end-to-end observations,
calibrations, and imaging of selected Science Verification (SV) targets. This
paper presents an overview of the campaign and its main results, including an
investigation of the short-term coherence properties and systematic phase
errors over the long baselines at the ALMA site, a summary of the SV targets
and observations, and recommendations for science observing strategies at long
baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also
compared to VLA 43 GHz results, demonstrating an agreement at a level of a few
percent. As a result of the extensive program of LBC testing, the highly
successful SV imaging at long baselines achieved angular resolutions as fine as
19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now
possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the
Astrophysical Journal Letters; this version with small changes to
affiliation
Prime Focus Spectrograph (PFS) for the Subaru Telescope: Overview, recent progress, and future perspectives
PFS (Prime Focus Spectrograph), a next generation facility instrument on the
8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed,
optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394
reconfigurable fibers will be distributed over the 1.3 deg field of view. The
spectrograph has been designed with 3 arms of blue, red, and near-infrared
cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure
at a resolution of ~1.6-2.7A. An international collaboration is developing this
instrument under the initiative of Kavli IPMU. The project is now going into
the construction phase aiming at undertaking system integration in 2017-2018
and subsequently carrying out engineering operations in 2018-2019. This article
gives an overview of the instrument, current project status and future paths
forward.Comment: 17 pages, 10 figures. Proceeding of SPIE Astronomical Telescopes and
Instrumentation 201
- …