141 research outputs found

    Does Industry Sponsorship Undermine the Integrity of Nutrition Research?

    Get PDF
    Drug companies have tried to influence the scientific record so as to make their products look healthier. Are food companies doing the same

    Effect of Animal and Industrial Trans Fatty Acids on HDL and LDL Cholesterol Levels in Humans – A Quantitative Review

    Get PDF
    Background: Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower HDL cholesterol, raise LDL cholesterol, and increase the risk of coronary heart disease. The effects of conjugated linoleic acid and trans fatty acids from ruminant animals are less clear. We reviewed the literature, estimated the effects trans fatty acids from ruminant sources and of conjugated trans linoleic acid (CLA) on blood lipoproteins, and compared these with industrial trans fatty acids. Methodology/Principal Findings: We searched Medline and scanned reference lists for intervention trials that reported effects of industrial trans fatty acids, ruminant trans fatty acids or conjugated linoleic acid on LDL and HDL cholesterol in humans. The 39 studies that met our criteria provided results of 29 treatments with industrial trans fatty acids, 6 with ruminant trans fatty acids and 17 with CLA. Control treatments differed between studies; to enable comparison between studies we recalculated for each study what the effect of trans fatty acids on lipoprotein would be if they isocalorically replaced cis mono unsaturated fatty acids. In linear regression analysis the plasma LDL to HDL cholesterol ratio increased by 0.055 (95% CI 0.044-0.066) for each % of dietary energy from industrial trans fatty acids replacing cis monounsaturated fatty acids The increase in the LDL to HDL ratio for each % of energy was 0.038 (95% CI 0.012-0.065) for ruminant trans fatty acids, and 0.043 (95% CI 0.012-0.074) for conjugated linoleic acid (p = 0.99 for difference between CLA and industrial trans fatty acids; p = 0.37 for ruminant versus industrial trans fatty acids). Conclusions/Significance: Published data suggest that all fatty acids with a double bond in the trans configuration raise the ratio of plasma LDL to HDL cholesterol

    Effect of a High Intake of Conjugated Linoleic Acid on Lipoprotein Levels in Healthy Human Subjects

    Get PDF
    Background -Trans fatty acids are produced either by industrial hydrogenation or by biohydrogenation in the rumens of cows and sheep. Industrial trans fatty acids lower high-density lipoprotein (HDL) cholesterol, raise low-density lipoprotein (LDL) cholesterol, and increase the risk of coronary heart disease. The effects of trans fatty acids from ruminants are less clear. We investigated the effect on blood lipids of cis-9, trans-11 conjugated linoleic acid (CLA), a trans fatty acid largely restricted to ruminant fats. Methodology/Principal Findings - Sixty-one healthy women and men were sequentially fed each of three diets for three weeks, in random order, for a total of nine weeks. Diets were identical except for 7% of energy (approximately 20 g/day), which was provided either by oleic acid, by industrial trans fatty acids, or by a mixture of 80% cis-9, trans-11 and 20% trans-10, cis-12 CLA. After the oleic acid diet, mean (± SD) serum LDL cholesterol was 2.68±0.62 mmol/L compared to 3.00±0.66 mmol/L after industrial trans fatty acids (

    Flow-mediated vasodilation is not impaired when HDL-cholesterol is lowered by substituting carbohydrates for monounsaturated fat

    Get PDF
    Low-fat diets, in which carbohydrates replace some of the fat, decrease serum cholesterol. This decrease is due to decreases in LDL-cholesterol but in part to possibly harmful decreases in HDL-cholesterol. High-oil diets, in which oils rich in monounsaturated fat replace some of the saturated fat, decrease serum cholesterol mainly through LDL-cholesterol. We used these two diets to investigate whether a change in HDL-cholesterol would change flow-mediated vasodilation, a marker of endothelial function. We fed thirty-two healthy volunteers two controlled diets in a 2x3.5 weeks' randomised cross-over design to eliminate variation in changes due to differences between subjects. The low-fat diet contained 59.7 % energy (en%) as carbohydrates and 25.7 en% as fat (7.8 en% as monounsaturates); the oil-rich diet contained 37.8 en% as carbohydrates and 44.4 en% as fat (19.3 en% as monounsaturates). Average (sd) serum HDL-cholesterol after the low-fat diet was 0.21 (sd 0.12) mmol/l (8.1 mg/dl) lower than after the oil-rich diet. Serum triacylglycerols were 0.22 (sd 0.28) mmol/l (19.5 mg/dl) higher after the low-fat diet than after the oil-rich diet. Serum LDL and homocysteine concentrations remained stable. Flow-mediated vasodilation was 4.8 (SD 2.9) after the low-fat diet and 4.1 (SD 2.7) after the oil-rich diet (difference 0.7 %; 95 % CI -0.6, 1.9). Thus, although the low-fat diet produced a lower HDL-cholesterol than the high-oil diet, flow-mediated vasodilation, an early marker of cardiovascular disease, was not impaired

    Інноваційна діяльність через впровадження технопарків

    Get PDF
    Досвід усього світу показує, що економічне зростання країн вже давно базується на використанні сфери знань і високих технологій, а їх ефективне поєднання гарантує прогресивний розвиток нації та людства. Однією з найбільш вдалих форм такої інтеграції є технопарки. Саме тому розвитку технопарків на сьогоднішній день приділяють увагу вчені та економісти. Основною метою статті є інноваційна діяльність через впровадження технологічних парків, їх призначення та вплив на розвиток країни

    Serum lipids, apoproteins and nutrient intake in rural Cretan boys consuming high-olive-oil diets

    Get PDF
    A high intake of olive oil has produced high levels of high-density and low levels of low-density lipoprotein cholesterol in short-term dietary trials. To investigate long-term effects of olive oil we have studied the diet and serum lipids of boys in Crete, where a high olive oil consumption is the norm. Seventy-six healthy rural Cretan boys aged 7–9 years were studied. The diet was assessed by a 2-day dietary recall. Blood was collected according to a standardized protocol and sera were analyzed in a rigidly standardized laboratory. The mean daily intake of energy was 11.0 MJ (2629 kcal). The intake of fat (45.0% of energy) and oleic acid (27.2% of energy) was high, and that of saturated fat low (10.0% of energy), reflecting a high consumption of olive oil. The high consumption of olive oil was confirmed by a high proportion of oleic-acid (27.1 %) in serum cholesteryl fatty acids. Mean concentration of serum total cholesterol was 4.42 mmol 1−1 (171 mg dl−1 ), of HDL-cholesterol 1.40 mmol 1−1 (54 mg dl−1), of serum triglycerides 0.59 mmol I−1 (52 mg dl−1 ), of apo-A1 1210 mg 1−1 and of LDL apo-B 798 mg 1−1. The body mass index of the Cretan boys (18.2 kg m−2) was on average 2 kg m−2 higher than that of boys from other countries. Contrary to our expectation, the Cretan boys did not show a more favourable serum lipoprotein pattern than boys from more westernized countries studied previously using the same protocol. Our hypothesis that a typical, olive-oil-rich Cretan diet causes a relatively high HDL- to total cholesterol ratio is not supported by the present findings

    Effect of Homocysteine-Lowering Nutrients on Blood Lipids: Results from Four Randomised, Placebo-Controlled Studies in Healthy Humans

    Get PDF
    BACKGROUND: Betaine (trimethylglycine) lowers plasma homocysteine, a possible risk factor for cardiovascular disease. However, studies in renal patients and in obese individuals who are on a weight-loss diet suggest that betaine supplementation raises blood cholesterol; data in healthy individuals are lacking. Such an effect on cholesterol would counteract any favourable effect on homocysteine. We therefore investigated the effect of betaine, of its precursor choline in the form of phosphatidylcholine, and of the classical homocysteine-lowering vitamin folic acid on blood lipid concentrations in healthy humans. METHODS AND FINDINGS: We measured blood lipids in four placebo-controlled, randomised intervention studies that examined the effect of betaine (three studies, n = 151), folic acid (two studies, n = 75), and phosphatidylcholine (one study, n = 26) on plasma homocysteine concentrations. We combined blood lipid data from the individual studies and calculated a weighted mean change in blood lipid concentrations relative to placebo. Betaine supplementation (6 g/d) for 6 wk increased blood LDL cholesterol concentrations by 0.36 mmol/l (95% confidence interval: 0.25–0.46), and triacylglycerol concentrations by 0.14 mmol/l (0.04–0.23) relative to placebo. The ratio of total to HDL cholesterol increased by 0.23 (0.14–0.32). Concentrations of HDL cholesterol were not affected. Doses of betaine lower than 6 g/d also raised LDL cholesterol, but these changes were not statistically significant. Further, the effect of betaine on LDL cholesterol was already evident after 2 wk of intervention. Phosphatidylcholine supplementation (providing approximately 2.6 g/d of choline) for 2 wk increased triacylglycerol concentrations by 0.14 mmol/l (0.06–0.21), but did not affect cholesterol concentrations. Folic acid supplementation (0.8 mg/d) had no effect on lipid concentrations. CONCLUSIONS: Betaine supplementation increased blood LDL cholesterol and triacylglycerol concentrations in healthy humans, which agrees with the limited previous data. The adverse effects on blood lipids may undo the potential benefits for cardiovascular health of betaine supplementation through homocysteine lowering. In our study phosphatidylcholine supplementation slightly increased triacylglycerol concentrations in healthy humans. Previous studies of phosphatidylcholine and blood lipids showed no clear effect. Thus the effect of phosphatidylcholine supplementation on blood lipids remains inconclusive, but is probably not large. Folic acid supplementation does not seem to affect blood lipids and therefore remains the preferred treatment for lowering of blood homocysteine concentrations
    corecore