356 research outputs found

    Identification of Termite Species and Subspecies of the Genus Zootermopsis Using Near-Infrared Reflectance Spectroscopy

    Get PDF
    Dampwood termites of the genus Zootermopsis (Isoptera: Termopsidae) are an abundant group of basal termites found in temperate forests of western North America. Three species are currently recognized in the genus and one of these species is subdivided into two subspecies. Although morphological and genetic characters are useful in differentiating among the three species and the two subspecies, respectively, only hydrocarbon analysis can enable differentiation both among the three species and the two subspecies. Due to the limitations of hydrocarbon analysis, such as the need for fresh specimens, alternative methods that could rapidly and accurately identify Zootermopsis would be useful. Using a partial least squares analysis of near-infrared spectra, each of the Zootermopsis species and subspecies were identified with greater than 95% and 80% accuracy, respectively. Neural network analysis of the near-infrared spectra successfully enabled the identification of the species and subspecies with greater than 99% accuracy. The inexpensive, reproducible, and rapid nature of near-infrared spectroscopy makes it a viable alternative to morphological, hydrocarbon, or genetic analysis for identifying Zootermopsis

    A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes

    Get PDF
    A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health

    Insights into SusCD-mediated glycan import by a prominent gut symbiont

    Get PDF
    In Bacteroidetes, one of the dominant phyla of the mammalian gut, active uptake of large nutrients across the outer membrane is mediated by SusCD protein complexes via a “pedal bin” transport mechanism. However, many features of SusCD function in glycan uptake remain unclear, including ligand binding, the role of the SusD lid and the size limit for substrate transport. Here we characterise the β2,6 fructo-oligosaccharide (FOS) importing SusCD from Bacteroides thetaiotaomicron (Bt1762-Bt1763) to shed light on SusCD function. Co-crystal structures reveal residues involved in glycan recognition and suggest that the large binding cavity can accommodate several substrate molecules, each up to ~2.5 kDa in size, a finding supported by native mass spectrometry and isothermal titration calorimetry. Mutational studies in vivo provide functional insights into the key structural features of the SusCD apparatus and cryo-EM of the intact dimeric SusCD complex reveals several distinct states of the transporter, directly visualising the dynamics of the pedal bin transport mechanism

    Estrogen-like activity of seafood related to environmental chemical contaminants

    Get PDF
    BACKGROUND: A wide variety of environmental pollutants occur in surface waters, including estuarine and marine waters. Many of these contaminants are recognised as endocrine disrupting chemicals (EDCs) which can adversely affect the male and female reproductive system by binding the estrogen receptor and exhibiting hormone-like activities. In this study the estrogenic activity of extracts of edible marine organisms for human consumption from the Mediterranean Sea was assayed. METHODS: Marine organisms were collected in two different areas of the Mediterranean Sea. The estrogenic activity of tissues was assessed using an in vitro yeast reporter gene assay (S. cerevisiae RMY 326 ER-ERE). Concentrations of polychlorinated biphenyls (PCBs) (congeners 28, 52, 101, 118, 138, 153, 180) in fish tissue was also evaluated. RESULTS: Thirty-eight percent of extracts showed a hormone-like activity higher than 10% of the activity elicited by 10 nM 17b-estradiol (E2) used as control. Total PCB concentrations ranged from 0.002 up to 1.785 ng/g wet weight. Chemical analyses detected different levels of contamination among the species collected in the two areas, with the ones collected in the Adriatic Sea showing concentrations significantly higher than those collected in the Tyrrhenian Sea (p < 0.01). CONCLUSION: The more frequent combination of chemicals in the samples that showed higher estrogenic activity was PCB 28, PCB 101, PCB 153, PCB 180. The content of PCBs and estrogenic activity did not reveal any significant correlation

    Mining for genotype-phenotype relations in Saccharomyces using partial least squares

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multivariate approaches are important due to their versatility and applications in many fields as it provides decisive advantages over univariate analysis in many ways. Genome wide association studies are rapidly emerging, but approaches in hand pay less attention to multivariate relation between genotype and phenotype. We introduce a methodology based on a BLAST approach for extracting information from genomic sequences and Soft- Thresholding Partial Least Squares (ST-PLS) for mapping genotype-phenotype relations.</p> <p>Results</p> <p>Applying this methodology to an extensive data set for the model yeast <it>Saccharomyces cerevisiae</it>, we found that the relationship between genotype-phenotype involves surprisingly few genes in the sense that an overwhelmingly large fraction of the phenotypic variation can be explained by variation in less than 1% of the full gene reference set containing 5791 genes. These phenotype influencing genes were evolving 20% faster than non-influential genes and were unevenly distributed over cellular functions, with strong enrichments in functions such as cellular respiration and transposition. These genes were also enriched with known paralogs, stop codon variations and copy number variations, suggesting that such molecular adjustments have had a disproportionate influence on <it>Saccharomyces </it>yeasts recent adaptation to environmental changes in its ecological niche.</p> <p>Conclusions</p> <p>BLAST and PLS based multivariate approach derived results that adhere to the known yeast phylogeny and gene ontology and thus verify that the methodology extracts a set of fast evolving genes that capture the phylogeny of the yeast strains. The approach is worth pursuing, and future investigations should be made to improve the computations of genotype signals as well as variable selection procedure within the PLS framework.</p

    Expansion of the Protein Repertoire in Newly Explored Environments: Human Gut Microbiome Specific Protein Families

    Get PDF
    The microbes that inhabit particular environments must be able to perform molecular functions that provide them with a competitive advantage to thrive in those environments. As most molecular functions are performed by proteins and are conserved between related proteins, we can expect that organisms successful in a given environmental niche would contain protein families that are specific for functions that are important in that environment. For instance, the human gut is rich in polysaccharides from the diet or secreted by the host, and is dominated by Bacteroides, whose genomes contain highly expanded repertoire of protein families involved in carbohydrate metabolism. To identify other protein families that are specific to this environment, we investigated the distribution of protein families in the currently available human gut genomic and metagenomic data. Using an automated procedure, we identified a group of protein families strongly overrepresented in the human gut. These not only include many families described previously but also, interestingly, a large group of previously unrecognized protein families, which suggests that we still have much to discover about this environment. The identification and analysis of these families could provide us with new information about an environment critical to our health and well being

    Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent

    Get PDF
    Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of ≥90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease

    Foreign Aid Transaction Costs: What are they and when are they minimised?

    Full text link
    'Transaction costs' are commonly referred to in the recent literature on aid effectiveness. Aid transaction costs, however, have been neither consistently defined nor measured. This article defines aid transaction costs as all the economic costs associated with aid management that add no value to aid delivery. This enables the 'net' transaction costs that should be minimised to be identified. An analytical framework is then developed for assessing these costs. This allows the effectiveness of different aid modalities to be compared, according to the characteristics of the aid transaction. The article shows that the choice of aid modality should depend on these characteristics and, therefore, that the minimisation of transaction costs should not be an end in itself.Peer reviewe

    Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism

    Get PDF
    Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a ‘selfish’ model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet
    corecore