239 research outputs found

    Postgenomic studies of Candida albicans

    Get PDF
    We assembled the genome of the human fungal pathogen Candida albicans into eight chromosomes, and annotated each of its genes. A genome comparison with Saccharomyces cerevisiae revealed an increased number of C. albicans superoxide dismutase genes. We analyzed the expression patterns and the function of one of these genes, SOD5, whose role is to protect the pathogen against extracellularly produced, neutrophil-generated superoxide radicals. Comparative genomics also showed that although many of the C. albicans transcription factors, such as Gal4p and Gcn4p, have homologues in S. cerevisiae, the sequence similarities occur only in the DNA binding motifs of those proteins. Deletion analysis of CaGcn4 and CaGal4 proteins show that the N' and C' termini respectively are needed for their transactivation ability. These two transactivation regions show no sequence similarity to the equivalent domains in their S. cerevisiae homologues, and the two C. albicans transactivatiog domains themselves show little similarity. A comparative analysis of the transcriptional machinery between C. albicans and S. cerevisiae showed low sequence similarity of the mediator complex that bridges activation domains of transcription factors to the RNA polymerase II complex. We performed a comparison of intergenic DNA regions to identify the cis-regulatory elements from Candida and Saccharomyces species to examine the organization of the transcriptional regulatory networks between these two organisms. We observed that the C. albicans GAL genes lack Gal4p binding sites, but that such sites are found upstream of telomeric genes and genes involved in glycolysis, and we show that CaGal4p regulates the expression of those genes. We identified the regulatory DNA sequences in the promoters of GAL genes, including a GAL-specific palindrome necessary for GAL10˛ expression. Cph1p, the C. albicans homolog of the Ste12p transcription factor controlling pheromone-induced gene expression in yeast, acts through this GAL-specific palindrome, functioning as an activator in the presence of galactose. This shows C. albicans and S. cerevisiae can regulate the same process by different regulatory circuits

    Intertextuality und its Role in the Fiction Analysis

    Get PDF
    У статті йдеться про види інтертекстуальності та їх вплив на розуміння тексту. Ihe article highlights the kinds of intertextuality and its impact on the text understanding

    Polyvinyl alcohol as a biocompatible alternative for the passivation of gold nanorods

    Get PDF
    The functionalization of gold nanorods (GNRs) with polymers is essential for both their colloidal stability and biocompatibility. However, a bilayer of the toxic cationic surfactant cetyl trimethylammonium bromide (CTAB) adsorbed on the nanorods complicates this process. Herein, we report on a strategy for the biocompatible functionalization of GNRs with a hydrophobic polymeric precursor, polyvinyl acetate, which is then transformed into its hydrophilic analogue, polyvinyl alcohol. This polymer was chosen due to its well-established biocompatibility, tunable “stealth” properties, tunable hydrophobicity, and high degree of functionality. The biocompatibility of the functionalized GNRs was tested by exposing them to primary human blood monocyte derived macrophages; the advantages of tunable hydrophobicity were demonstrated with the long-term stable encapsulation of a model hydrophobic drug molecule

    The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans

    Get PDF
    Date of Acceptance: 13/11/2012 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Correction for Sandai et al., The Evolutionary Rewiring of Ubiquitination Targets Has Reprogrammed the Regulation of Carbon Assimilation in the Pathogenic Yeast Candida albicans published 20-01-2015 DOI: 10.1128/mBio.02489-14Peer reviewedPublisher PD

    Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes

    Get PDF
    For Assembly 20 of the Candida albicans genome, the sequence of each of the eight chromosomes was determined, revealing new insights into gene family creation and dispersion, subtelomere organization, and chromosome evolution

    Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress

    Get PDF
    Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD
    corecore