2,606 research outputs found

    Rectification of electronic heat current by a hybrid thermal diode

    Full text link
    We report the realization of an ultra-efficient low-temperature hybrid heat current rectifier, thermal counterpart of the well-known electric diode. Our design is based on a tunnel junction between two different elements: a normal metal and a superconducting island. Electronic heat current asymmetry in the structure arises from large mismatch between the thermal properties of these two. We demonstrate experimentally temperature differences exceeding 6060 mK between the forward and reverse thermal bias configurations. Our device offers a remarkably large heat rectification ratio up to 140\sim 140 and allows its prompt implementation in true solid-state thermal nanocircuits and general-purpose electronic applications requiring energy harvesting or thermal management and isolation at the nanoscale.Comment: 8 pages, 6 color figure

    New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth [Postprint]

    Get PDF
    Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3β inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3β inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA.SAF2012-37979-C03-01 to A.M; BFU2012-33142 to E.A.EN

    Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorns delivered siRNA.

    Full text link
    [EN] We synthesized a non-viral delivery system (f-CNH3) for small interfering RNA (siRNA) by anchoring a fourth-generation polyamidoamine dendrimer (G4-PAMAM) to carbon nanohorns (CNHs). Using this new compound, we delivered a specific siRNA designed to knockdown cofilin-1, a key protein in the regulation of cellular cytoskeleton, to human prostate cancer (PCa) cells. The carbon nanohorn (CNH) derivative was able to bind siRNA and release it in the presence of an excess of the polyanion heparin. Moreover, this hybrid nanomaterial protected the siRNA from RNAse-mediated degradation. Synthetic siRNA delivered to PCa cells by f-CNH3 decreased the cofilin-1 mRNA and protein levels to about 20% of control values. Docetaxel, the drug of choice for the treatment of PCa, produced a concentration-dependent activation of caspase-3, an increase in cell death assessed by lactate dehydrogenase release to the culture medium, cell cycle arrest and inhibition of tumor cell proliferation. All of these toxic effects were potentiated when cofilin-1 was down regulated in these cells by a siRNA delivered by the nanoparticle. This suggests that knocking down certain proteins involved in cancer cell survival and/or proliferation may potentiate the cytotoxic actions of anticancer drugs and it might be a new therapeutic approach to treat tumors.F.C.P-M. and B.C. are recipients of Torres Quevedo contracts from Ministerio de Ciencia e Innovacion (Spain) and NanoDrugs, S.L. This work has been supported, in part, by grants BFU2011-30161-C02-01 from Ministerio de Ciencia e Innovacion; PII1I09-0163-4002 and POII10-0274-3182 from Consejeria de Educacion, JCCM to V.C.Pérez-Martínez, FC.; Carrión, B.; Lucío, MI.; Rubio, N.; Herrero, MA.; Vázquez, E.; Ceña, V. (2012). Enhanced docetaxel-mediated cytotoxicity in human prostate cancer cells through knockdown of cofilin-1 by carbon nanohorns delivered siRNA. Biomaterials. 33(32):8152-8159. https://doi.org/10.1016/j.biomaterials.2012.07.03881528159333

    Crystal size dependence of dipolar ferromagnetic order between Mn6 molecular nanomagnets

    Full text link
    We study how crystal size influences magnetic ordering in arrays of molecular nanomagnets coupled by dipolar interactions. Compressed fluid techniques have been applied to synthesize crystals of Mn6 molecules (spin S=12) with sizes ranging from 28μm down to 220 nm. The onset of ferromagnetic order and the spin thermalization rates have been studied by means of ac susceptibility measurements. We find that the ordered phase remains ferromagnetic, as in the bulk, but the critical temperature Tc decreases with crystal size. Simple magnetostatic energy calculations, supported by Monte Carlo simulations, account for the observed drop in Tc in terms of the minimum attainable energy for finite-sized magnetic domains limited by the crystal boundaries. Frequency-dependent susceptibility measurements give access to the spin dynamics. Although magnetic relaxation remains dominated by individual spin flips, the onset of magnetic order leads to very long spin thermalization time scales. The results show that size influences the magnetism of dipolar systems with as many as 1011 spins and are relevant for the interpretation of quantum simulations performed on finite lattices

    Study of the Structure-Properties-Processing Relationship of Nanocomposites Based on Poly (Lactic Acid) (PLA) and o-MMT

    Get PDF
    En este trabajo se investiga la influencia del procesado y del contenido de nanoarcilla en las propiedades mecánicas de láminas obtenidas por extrusión-calandra a partir de un grado comercial de PLA y una nanoarcilla organomodificada. El estudio de la morfología se realizó mediante Difracción de Rayos-X de Grandes Ángulos (WAXS) y Microscopía Electrónica de Transmisión (TEM), revelando el desarrollo de estructuras intercaladas, aunque también se observaron laminillas exfoliadas y partículas aglomeradas. La caracterización mecánica se realizó mediante ensayos a tracción uniaxial. Así mismo, se aplicó un tratamiento térmico a todas las láminas preparadas que permitió el estudio de los materiales en dos estados diferentes: rejuvenecido y envejecido. El comportamiento mecánico se vio afectado por el procesado solo cuando el PLA se encuentra en estado envejecido, mientras que el contenido de arcilla únicamente produce algún efecto cuando esta está presente en un 2,5 % en masa. El tratamiento de rejuvenecimiento provocó una transición frágil-dúctil, que se manifestó en un aumento significativo de la ductilidad.In this work, the effect of processing and nanoclay content on the mechanical properties of thin sheets obtained by cast sheet extrusion from a commercial grade of PLA and organomodified nanoclay has been investigated. Microstructure was studied using Transmission Electron Microscopy (TEM) and Wide Angle X-ray Scattering (WAXS), revealing the development of structures intercalated, although exfoliated clay layers and agglomerates were observed also. The mechanical properties have been assessed by uniaxial tensile tests. Finally, a deaging thermal treatment was applied to all prepared samples, in order to study the materials under two different states: relaxed (after the thermal treatment) and aged (before treatment). The tensile behaviour is affected by processing only in the case of aged PLA samples, whereas the addition of nanoclay is only significant at 2,5 % w/w. The de-aging treatment causes a change in the brittle-ductile behaviour evidenced in a significant increase in ductility

    Clinical, virological and biochemical evidence supporting the association of HIV-1 reverse transcriptase polymorphism R284K and thymidine analogue resistance mutations M41L, L210W and T215Y in patients failing tenofovir/emtricitabine therapy

    Get PDF
    Background: Thymidine analogue resistance mutations (TAMs) selected under treatment with nucleoside analogues generate two distinct genotypic profiles in the HIV-1 reverse transcriptase (RT): (i) TAM1: M41L, L210W and T215Y, and (ii) TAM2: D67N, K70R and K219E/Q, and sometimes T215F. Secondary mutations, including thumb subdomain polymorphisms (e.g. R284K) have been identified in association with TAMs. We have identified mutational clusters associated with virological failure during salvage therapy with tenofovir/emtricitabine-based regimens. In this context, we have studied the role of R284K as a secondary mutation associated with mutations of the TAM1 complex. Results: The cross-sectional study carried out with >200 HIV-1 genotypes showed that virological failure to tenofovir/emtricitabine was strongly associated with the presence of M184V (P < 10-10) and TAMs (P < 10-3), while K65R was relatively uncommon in previously-treated patients failing antiretroviral therapy. Clusters of mutations were identified, and among them, the TAM1 complex showed the highest correlation coefficients. Covariation of TAM1 mutations and V118I, V179I, M184V and R284K was observed. Virological studies showed that the combination of R284K with TAM1 mutations confers a fitness advantage in the presence of zidovudine or tenofovir. Studies with recombinant HIV-1 RTs showed that when associated with TAM1 mutations, R284K had a minimal impact on zidovudine or tenofovir inhibition, and in their ability to excise the inhibitors from blocked DNA primers. However, the mutant RT M41L/L210W/T215Y/R284K showed an increased catalytic rate for nucleotide incorporation and a higher RNase H activity in comparison with WT and mutant M41L/L210W/T215Y RTs. These effects were consistent with its enhanced chain-terminated primer rescue on DNA/DNA template-primers, but not on RNA/DNA complexes, and can explain the higher fitness of HIV-1 having TAM1/R284K mutations. Conclusions: Our study shows the association of R284K and TAM1 mutations in individuals failing therapy with tenofovir/emtricitabine, and unveils a novel mechanism by which secondary mutations are selected in the context of drug-resistance mutations

    Proyecto PREDIRCAM 2. Análisis preliminar de uso y valoración de la plataforma

    Get PDF
    En la actualidad, la prevalencia de las enfermedades no transmisibles (Non-communicable diseases NCD) y la cantidad de muertes causadas por éstas es muy elevada, en su mayoría, consecuencia del envejecimiento de la población, el aumento de la obesidad y los hábitos de vida sedentarios. En este trabajo se describen el funcionamiento y los resultados preliminares del proyecto Predircam 2, destinado al desarrollo y validación de una plataforma inteligente de tecnologías biomédicas para la monitorización, prevención y tratamiento personalizados del sobrepeso, la obesidad y la prevención de enfermedades asociadas como la diabetes, hipertensión arterial o alteraciones del metabolismo lipídico. El objetivo de este trabajo es presentar los resultados preliminares del análisis del uso de la plataforma, la evaluación de la usabilidad y la valoración de la atención recibida por los pacientes en relación a los profesionales sanitarios

    Antileishmanial activity of terpenylquinones on Leishmania infantum and their effects on Leishmania topoisomerase IB

    Get PDF
    [EN] Leishmania is the aethiological agent responsible for the visceral leishmaniasis, a serious parasite-borne disease widely spread all over the World. The emergence of resistant strains makes classical treatments less effective; therefore, new and better drugs are necessary. Naphthoquinones are interesting compounds for which many pharmacological properties have been described, including leishmanicidal activity. This work shows the antileishmanial effect of two series of terpenyl-1,4-naphthoquinones (NQ) and 1,4-anthraquinones (AQ) obtained from natural terpenoids, such as myrcene and myrceocommunic acid. They were evaluated both in vitro and ex vivo against the transgenic iRFP-Leishmania infantum strain and also tested on liver HepG2 cells to determine their selectivity indexes. The results indicated that NQ derivatives showed better antileishmanial activity than AQ analogues, and among them, compounds with a diacetylated hydroquinone moiety provided better results than their corresponding quinones. Regarding the terpenic precursor, compounds obtained from the monoterpenoid myrcene displayed good antiparasitic efficiency and low cytotoxicity for mammalian cells, whereas those derived from the diterpenoid showed better antileishmanial activity without selectivity. In order to explore their mechanism of action, all the compounds have been tested as potential inhibitors of Leishmania type IB DNA topoisomerases, but only some compounds that displayed the quinone ring were able to inhibit the recombinant enzyme in vitro. This fact together with the docking studies performed on LTopIB suggested the existence of another mechanism of action, alternative or complementary to LTopIB inhibition. In silico druglikeness and ADME evaluation of the best leishmanicidal compounds has shown good predictable druggabilitySIFinancial support came from Spanish MINECO (CTQ2015-68175-R, AGL2016-79813-C2-1-R, AGL2016-79813-C2-2-R and SAF2017-83575-R), ISCIII-RICET Network (RD12/0018/0002) and Consejería de Educación de la Junta de Castilla y León (LE020P17) co-financed by the Fondo Social Europeo of the European Union (FEDER-EU). P. G. J. acknowledges funding by Fundación Salamanca Ciudad de Cultura y Saberes (’‘Programme for attracting scientific talent to Salamanca’‘

    Trait anxiety is associated with attentional brain networks

    Full text link
    Trait anxiety is a well-established risk factor for anxiety and depressive disorders, yet its neural correlates are not clearly understood. In this study, we investigated the neural correlates of trait anxiety in a large sample (n = 179) of individuals who completed the trait and state versions of the State-Trait Anxiety Inventory and underwent resting-state functional magnetic resonance imaging. We used independent component analysis to characterize individual resting-state networks (RSNs), and multiple regression analyses to assess the relationship between trait anxiety and intrinsic connectivity. Trait anxiety was significantly associated with intrinsic connectivity in different regions of three RSNs (dorsal attention network, default mode network, and auditory network) when controlling for state anxiety. These RSNs primarily support attentional processes. Notably, when state anxiety was not controlled for, a different pattern of results emerged, highlighting the importance of considering this factor in assessing the neural correlates of trait anxiety. Our findings suggest that trait anxiety is uniquely associated with resting-state brain connectivity in networks mainly supporting attentional processes. Moreover, controlling for state anxiety is crucial when assessing the neural correlates of trait anxiety. These insights may help refine current neurobiological models of anxiety and identify potential targets for neurobiologically-based interventions
    corecore