207 research outputs found

    On-Line influenza virus quantification for viral production processes thanks to affinity-based surface plasmon resonance biosensor

    Get PDF
    Influenza virus seasonal epidemics, associated with the constant threat of new pandemic outbreak, challenge vaccine manufacturers to develop responsive processes that can outreach the limitations of traditional egg-based technology. Recent progress made regarding cell culture bioprocesses allowed for numerous alternative strategies to developed future vaccine candidates, as for example the recombinant HA or Virus—like Particles (VLP) vaccines. However, while cell culture allows for more versatility than ovoculture, regarding process development and monitoring, these alternatives still require optimization to seriously concurrence the traditional process. To drive these developments, WHO and regulatory agencies underlined the need for developing better influenza vaccine potency assays1,2. Actual influenza vaccine formulation and lot release rely on single-radial immunodiffusion (SRID) assay, which requires strain-specific reference sera and antigen reagents. However, the annual preparation of these reagents takes between 2 to 6 months and constitutes a critical bottleneck for the release of vaccine lots3. Additionally, SRID is not implementable for process development as such technique cannot handle in-process low concentrated and non-purified material. We developed an assay for rapid and label-free quantification of influenza hemagglutinin (HA) antigen and influenza virus based on surface plasmon resonance (SPR). The method is based on affinity capture of hemagglutinin antigen by sialic-acid terminated glycans present at the surface of the fetuin-functionalized sensor. Conditions were optimized for the regeneration of the surface, in order to run multiple sequential analyses on a unique sensor. Two types of purified standard were used during the development of the assay. Commercial trivalent inactivated vaccine (“TIV”) has been used for the determination of optimal analytical conditions, while a stock of split inactivated H1N1 virus has been produced and calibrated in our laboratory to study the specific response obtained toward this HA subtype. This assay offers a quantification of influenza hemagglutinin within minutes with a wide dynamic range (30 ng/mL-20 µg/mL). Also, the technique provides a limit of detection (LOD) 100 times lower than SRID, and a better reproducibility than SRID and its potential alternatives recently proposed (1,4,5. Additionally, the applicability of this assay for an on-line vaccine production monitoring has been validated by off-line measurement of influenza H1N1 virus particles derived from cell culture supernatant. Such a test allowed to achieve a LOD of 106 Infectious Viral Particles/mL Thus, our assay provides an innovative tool to evaluate influenza new vaccine bioprocesses, from viral production kinetics in mammalian cell culture to vaccine potency evaluation

    Integrated graphene quantum dot decorated functionalized nanosheet biosensor for mycotoxin detection

    Get PDF
    Decoration of graphene quantum dots (GQDs) on molybdenum disulfide (MoS2) nanosheets serves as an active electrode material which enhances the electrochemical performance of the analyte detection system. Herein, ionic surfactant cetyltrimethylammonium bromide (CTAB)-exfoliated MoS2 nanosheets decorated with GQD material are used to construct an electrochemical biosensor for aflatoxin B1 (AFB1) detection. An antibody of AFB1 (aAFB1) was immobilized on the electrophoretically deposited MoS2@GQDs film on the indium tin oxide (ITO)-coated glass surface using a crosslinker for the fabrication of the biosensor. The immunosensing study investigated by the electrochemical method revealed a signal response in the range of 0.1 to 3.0 ng/mL AFB1 concentration with a detection limit of 0.09 ng/mL. Also, electrochemical parameters such as diffusion coefficient and heterogeneous electron transfer (HET) were calculated and found to be 1.67 x 10(-5) cm(2)/s and 2 x 10(-5)cm/s, respectively. The effective conjugation of MoS2@GQDs that provides abundant exposed edge sites, large surface area, improved electrical conductivity, and electrocatalytic activity has led to an excellent biosensing performance with enhanced electrochemical parameters. Validation of the fabricated immunosensor was performed in a spiked maize sample, and a good percentage of recoveries within an acceptable range were obtained (80.2 to 98.3%)

    Peptide-protein microarrays and surface plasmon resonance detection: biosensors for versatile biomolecular interaction analysis.

    Get PDF
    International audienceBiosensors in microarray format provide promising tools for high-throughput analyses of complex samples. Although they are able to detect, quantify and characterize a multitude of compounds, most of the available devices are specialized in the analysis of one type of interaction, limiting their application to a define area. The aim of our work was to develop and characterize versatile protein (or peptide) microarrays suitable for the simultaneous analysis of a large panel of biological interactions. Our system involved a simple procedure to immobilized proteins or peptides, based on pyrrole electropolymerization, and ligand binding was detected by imaging the surface plasmon resonance. We demonstrated its suitability in three different contexts, i.e. humoral response characterization, ion binding analysis and cell detection. This work evidences the potentiality of this approach which allows multiparametric, high-throughput and label-free analysis of biological samples suitable for the detection of compounds as various as proteins, ions or cells and the characterization of their interaction with peptides or proteins

    3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space

    Get PDF
    : 3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future

    High prevalence of PRPH2 in autosomal dominant retinitis pigmentosa in France and characterization of biochemical and clinical features.

    Get PDF
    International audiencePURPOSE:To assess the prevalence of PRPH2 in autosomal dominant retinitis pigmentosa (adRP), to report six novel mutations, to characterize the biochemical features of a recurrent novel mutation and to study the clinical features of adRP patients.DESIGN:Retrospective clinical and molecular genetic study.METHODS:Clinical investigations included visual field testing, fundus examination, high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence imaging and electroretinogram (ERG) recording. PRPH2 was screened by Sanger sequencing in a cohort of 310 French families with adRP. Peripherin-2 protein was produced in yeast and analyzed by Western blot.RESULTS:We identified 15 mutations, including 6 novel and 9 previously reported changes in 32 families, accounting for a prevalence of 10.3% in this adRP population. We showed that a new recurrent p.Leu254Gln mutation leads to protein aggregation, suggesting abnormal folding. The clinical severity of the disease in examined patients was moderate with 78% of the eyes having 1 to 0.5 of visual acuity and 52% of the eyes retaining more than 50% of the visual field. Some patients characteristically showed vitelliform deposits or macular involvement. In some families, pericentral RP or macular dystrophy were found in family members while widespread RP was present in other members of the same families.CONCLUSIONS:The mutations in PRPH2 account for 10.3% of adRP in the French population, which is higher than previously reported (0-8%) This makes PRPH2 the second most frequent adRP gene after RHO in our series. PRPH2 mutations cause highly variable phenotypes and moderate forms of adRP, including mild cases which could be underdiagnosed

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    3D Bioprinting in Microgravity: Opportunities, Challenges, and Possible Applications in Space

    Get PDF
    3D bioprinting has developed tremendously in the last couple of years and enables the fabrication of simple, as well as complex, tissue models. The international space agencies have recognized the unique opportunities of these technologies for manufacturing cell and tissue models for basic research in space, in particular for investigating the effects of microgravity and cosmic radiation on different types of human tissues. In addition, bioprinting is capable of producing clinically applicable tissue grafts, and its implementation in space therefore can support the autonomous medical treatment options for astronauts in future long term and far-distant space missions. The article discusses opportunities but also challenges of operating different types of bioprinters under space conditions, mainly in microgravity. While some process steps, most of which involving the handling of liquids, are challenging under microgravity, this environment can help overcome problems such as cell sedimentation in low viscous bioinks. Hopefully, this publication will motivate more researchers to engage in the topic, with publicly available bioprinting opportunities becoming available at the International Space Station (ISS) in the imminent future
    corecore