565 research outputs found

    Modelos de erosión de base física: características y utilidades

    Get PDF
    [Resumen] El desarrollo de los modelos de erosión tiene como objetivo facilitar la predicción de la erosión y diseñar así, las posibles medidas de prevención para evitar la pérdida de suelo. Actualmente, estos modelos de erosión tienden a describir los procesos mediante aproximaciones de tipo físico, y han aumentado su complejidad en el tratamiento de datos. En el presente trabajo se analizan las diferencias y semejanzas de 5 modelos principales de erosión de los últimos 20 años (ANSWERS, CREAMS, KINEROS, EUROSEM y WEPP), y se plantean los posibles errores que involucran estos modelos "avanzados", ya sea por su complejidad, como por su utilización.[Abstract] At present, erosion models are common too1s to cope with erosive processes. These models are aimed to predict erosion, thus helping to design management actions oriented to prevent soil loss. Nowadays, erosion models represent physica1 processes, and their comp1exity increas. Diferences and resemblances between 5 main erosion models developed in the 1ast 20 years (ANSWERS, CREAMS, KINEROS, EUROSEM and WEPP), and it's questioned the possible errors associated with these "advanced" models are discussed

    The detection of neutron clusters

    Get PDF
    A new approach to the production and detection of bound neutron clusters is presented. The technique is based on the breakup of beams of very neutron-rich nuclei and the subsequent detection of the recoiling proton in a liquid scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B beams by a C target. Some 6 events were observed that exhibit the characteristics of a multineutron cluster liberated in the breakup of 14Be, most probably in the channel 10Be+4n. The various backgrounds that may mimic such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1

    Borates or phosphates? That is the question

    Full text link
    [EN] Chemical nomenclature is perceived to be a closed topic. However, this work shows that the identification of polyanionic groups is still ambiguous and so is the nomenclature for some ternary compounds. Two examples, boron phosphate (BPO4) and boron arsenate (BAsO4), which were assigned to the large phosphate and arsenate families, respectively, nearly a century ago, are explored. The analyses show that these two compounds should be renamed phosphorus borate (PBO4) and arsenic borate (AsBO4). Beyond epistemology, this has pleasing consequences at several levels for the predictive character of chemistry. It paves the way for future work on the possible syntheses of SbBO4 and BiBO4, and it also renders previous structure field maps completely predictive, allowing us to foresee the structure and phase transitions of NbBO4 and TaBO4. Overall, this work demonstrates that quantum mechanics calculations can contribute to the improvement of current chemical nomenclature. Such revisitation is necessary to classify compounds and understand their properties, leading to the main final aim of a chemist: predicting new compounds, their structures and their transformations.This research was partially supported by Spanish MINECO (grant Nos. MAT2015-71070-REDC and MAT2016-75586-C4-2-P, and MALTA Consolider Team RED2018-102612-T) and Generalitat Valenciana (grant No. PROMETEO/2018/123-EFIMAT). J. Contreras-Garci ' a thanks CALSIMLAB (public grant No. ANR-11-LABX-0037-01), overseen by the French National Research Agency (ANR) as part of the Investissements d'Avenir program (grant No. ANR-11-IDEX-0004-02). M. Marque ' s acknowledges support from the ERC grant `Hecate' and computational resources provided by the UKCP consortium under EPSRC grant EP/P022561/1.Contreras-García, J.; Izquierdo-Ruiz, F.; Marqués, M.; Manjón, F. (2020). Borates or phosphates? That is the question. Acta Crystallographica Section A: Foundations and Advances. 76:197-205. https://doi.org/10.1107/S2053273319016826S19720576Abraham, R. H. & Marsden, J. E. (1994). Foundations of Mechanics. Reading: Addison Wesley.Alinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F. III, Schreiner, P. R. & Schleyer, von R. (1998). Encyclopedia of Computational Chemistry, edited by R. F. W. Bader. Chichester: Wiley.Bader, R. F. W. (1990). Atoms in Molecules, a Quantum Theory. Oxford: Clarendon.Bader, R. F. W. (1994). Principle of stationary action and the definition of a proper open system. Physical Review B, 49(19), 13348-13356. doi:10.1103/physrevb.49.13348Bastide, J. P. (1987). Systématique simplifiée des composés ABX4 (X = O2−, F−) et evolution possible de leurs structures cristallines sous pression. Journal of Solid State Chemistry, 71(1), 115-120. doi:10.1016/0022-4596(87)90149-6Bayer, G. (1972). Thermal expansion of ABO4-compounds with zircon- and scheelite structures. Journal of the Less Common Metals, 26(2), 255-262. doi:10.1016/0022-5088(72)90045-8Blasse, G., & Van Den Heuvel, G. P. M. (1973). Some optical properties of tantalum borate (tabo4), a compound with unusual coordinations. Physica Status Solidi (a), 19(1), 111-117. doi:10.1002/pssa.2210190109Boyd, R. J. & Matta, C. F. (2007). Editors. The Quantum Theory of Atoms in Molecules. From Solid State to DNA and Drug Design. Weinheim: Wiley-VCH.Brill, R., & Debretteville, A. P. (1955). On the chemical bond type in AlPO4. Acta Crystallographica, 8(9), 567-570. doi:10.1107/s0365110x5500176xDachille, F., & Glasser, L. S. D. (1959). High pressure forms of BPO4 and BAsO4; quartz analogues. Acta Crystallographica, 12(10), 820-821. doi:10.1107/s0365110x59002365Dachille, F., & Roy, R. (1959). High-pressure region of the silica isotypes. Zeitschrift für Kristallographie, 111(1-6), 451-461. doi:10.1524/zkri.1959.111.1-6.451Demartin, F., Diella, V., Gramaccioli, C. M., & Pezzotta, F. (2001). Schiavinatoite, (Nb,Ta)BO4, the Nb analogue of behierite. European Journal of Mineralogy, 13(1), 159-165. doi:10.1127/0935-1221/01/0013-0159Depero, L. E., & Sangaletti, L. (1997). Cation Sublattice and Coordination Polyhedra inABO4Type of Structures. Journal of Solid State Chemistry, 129(1), 82-91. doi:10.1006/jssc.1996.7234Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Fukunaga, O., & Yamaoka, S. (1979). Phase transformations in ABO 4 type compounds under high pressure. Physics and Chemistry of Minerals, 5(2), 167-177. doi:10.1007/bf00307551Gázquez, J. L., & Ortiz, E. (1984). Electronegativities and hardnesses of open shell atoms. The Journal of Chemical Physics, 81(6), 2741-2748. doi:10.1063/1.447946Geerlings, P., De Proft, F., & Langenaeker, W. (2003). Conceptual Density Functional Theory. Chemical Reviews, 103(5), 1793-1874. doi:10.1021/cr990029pGenoni, A., Bučinský, L., Claiser, N., Contreras‐García, J., Dittrich, B., Dominiak, P. M., … Grabowsky, S. (2018). Quantum Crystallography: Current Developments and Future Perspectives. Chemistry – A European Journal, 24(43), 10881-10905. doi:10.1002/chem.201705952Gibbs, G. V., Cox, D. F., Boisen, M. B., Downs, R. T., & Ross, N. L. (2003). The electron localization function: a tool for locating favorable proton docking sites in the silica polymorphs. Physics and Chemistry of Minerals, 30(5), 305-316. doi:10.1007/s00269-003-0318-2Gramaccioli, C. M. (2000). Un nuovo minerale: la schiavinatoite. Rendiconti Lincei, 11(4), 197-199. doi:10.1007/bf02904665Haines, J., Chateau, C., Léger, J. M., Bogicevic, C., Hull, S., Klug, D. D., & Tse, J. S. (2003). Collapsing Cristobalitelike Structures in Silica Analogues at High Pressure. Physical Review Letters, 91(1). doi:10.1103/physrevlett.91.015503Hazen, R. M., & Finger, L. W. (1979). Bulk modulus-volume relationship for cation-anion polyhedra. Journal of Geophysical Research: Solid Earth, 84(B12), 6723-6728. doi:10.1029/jb084ib12p06723Hazen, R. M., Finger, L. W., & Mariathasan, J. W. E. (1985). High-pressure crystal chemistry of scheelite-type tungstates and molybdates. Journal of Physics and Chemistry of Solids, 46(2), 253-263. doi:10.1016/0022-3697(85)90039-3IUPAC (1970). Nomenclature of Inorganic Solids. Definitive Rules. 3rd ed. London: International Union of Pure and Applied Chemistry.Kniep, R., Gözel, G., Eisenmann, B., Röhr, C., Asbrand, M., & Kizilyalli, M. (1994). Borophosphates—A Neglected Class of Compounds: Crystal Structures of MII[BPO5](MII Ca, Sr) and Ba3[BP3O12]. Angewandte Chemie International Edition in English, 33(7), 749-751. doi:10.1002/anie.199407491Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758Lashin, V. E., Khritokhin, N. A., & Andreev, O. V. (2012). Structure maps of ABX4 inorganic compounds. Russian Journal of Inorganic Chemistry, 57(12), 1584-1587. doi:10.1134/s0036023612120133Léger, J. M., Haines, J., Chateau, C., Bocquillon, G., Schmidt, M. W., Hull, S., … Marchand, R. (2001). Phosphorus oxynitride PON, a silica analogue: structure and compression of the cristobalite-like phase; P  - T phase diagram. Physics and Chemistry of Minerals, 28(6), 388-398. doi:10.1007/s002690100161Liu, L. (1982). Phase transformations in MSiO4 compounds at high pressures and their geophysical implications. Earth and Planetary Science Letters, 57(1), 110-116. doi:10.1016/0012-821x(82)90177-7Martín Pendás, A., Costales, A., Blanco, M. A., Recio, J. M., & Luaña, V. (2000). Local compressibilities in crystals. Physical Review B, 62(21), 13970-13978. doi:10.1103/physrevb.62.13970Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188Mori-Sánchez, P., Pendás, A. M., & Luaña, V. (2001). Polarity inversion in the electron density of BP crystal. Physical Review B, 63(12). doi:10.1103/physrevb.63.125103Muller, O., & Roy, R. (1973). Phase transitions among the ABX4compounds*,1. Zeitschrift für Kristallographie, 138(138), 237-253. doi:10.1524/zkri.1973.138.138.237O’Keeffe, M., & Hyde, B. G. (1976). Cristobalites and topologically-related structures. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32(11), 2923-2936. doi:10.1107/s0567740876009308Otero-de-la-Roza, A., Blanco, M. A., Pendás, A. M., & Luaña, V. (2009). Critic: a new program for the topological analysis of solid-state electron densities. Computer Physics Communications, 180(1), 157-166. doi:10.1016/j.cpc.2008.07.018Otero-de-la-Roza, A., Johnson, E. R., & Contreras-García, J. (2012). Revealing non-covalent interactions in solids: NCI plots revisited. Physical Chemistry Chemical Physics, 14(35), 12165. doi:10.1039/c2cp41395gPauling, L. (1929). THE PRINCIPLES DETERMINING THE STRUCTURE OF COMPLEX IONIC CRYSTALS. Journal of the American Chemical Society, 51(4), 1010-1026. doi:10.1021/ja01379a006Pauling, L. (1960). The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry, 3rd ed., pp. 543-562. Ithaca: Cornell University Press.Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Rahm, M., Zeng, T., & Hoffmann, R. (2018). Electronegativity Seen as the Ground-State Average Valence Electron Binding Energy. Journal of the American Chemical Society, 141(1), 342-351. doi:10.1021/jacs.8b10246Range, K.-J., Wildenauer, M., & Heyns, A. M. (1988). Extremely Short Non-Bonding Oxygen?Oxygen Distances: The Crystal Structures of NbBO4, NaNb3O8, and NaTa3O8. Angewandte Chemie International Edition in English, 27(7), 969-971. doi:10.1002/anie.198809691Recio, J. M., Franco, R., Martín Pendás, A., Blanco, M. A., Pueyo, L., & Pandey, R. (2001). Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Physical Review B, 63(18). doi:10.1103/physrevb.63.184101Schulze, G. E. R. (1933). Die Kristallstruktur von BPO4 und BAsO4. Die Naturwissenschaften, 21(30), 562-562. doi:10.1007/bf01503856Scott, H. P., Williams, Q., & Knittle, E. (2001). Ultralow Compressibility Silicate without Highly Coordinated Silicon. Physical Review Letters, 88(1). doi:10.1103/physrevlett.88.015506Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767. doi:10.1107/s0567739476001551Stubican, V. S., & Roy, R. (1963). High-pressure scheelite-structure polymorphs of rare-earth vanadates and arsenates. Zeitschrift für Kristallographie, 119(1-2), 90-97. doi:10.1524/zkri.1963.119.1-2.90Vinet, P., Ferrante, J., Smith, J. R. & Rose, J. H. (1986). J. Phys. C: Solid State Phys. L, 19, 467.Vorres, K. S. (1962). Correlating ABO4 compound structures. Journal of Chemical Education, 39(11), 566. doi:10.1021/ed039p566Yang, W., Parr, R. G., & Uytterhoeven, L. (1987). New relation between hardness and compressibility of minerals. Physics and Chemistry of Minerals, 15(2), 191-195. doi:10.1007/bf00308783Zhang, J., Song, L., Sist, M., Tolborg, K., & Iversen, B. B. (2018). Chemical bonding origin of the unexpected isotropic physical properties in thermoelectric Mg3Sb2 and related materials. Nature Communications, 9(1). doi:10.1038/s41467-018-06980-

    Comment on "First Observation of Ground State Dineutron Decay: 16Be"

    Full text link
    A recent measurement [Spyrou et al., PRL 108, 102501 (2012)] of the in-flight decay of 16Be into 14Be+n+n has been interpreted as the first case of dineutron emission. Here we point out that the inclusion of the n-n interaction neglected in the description of the direct three-body decay can generate strong enhancements at low n-n relative energy and angle, as observed, without any need to invoke dineutron decay.Comment: Final version, published in Physical Review Letter

    Babinet principle applied to the design of metasurfaces and metamaterials

    Get PDF
    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate

    Split ring resonator-based left-handed coplanar waveguide

    Get PDF
    In this letter, a planar left-handed propagating medium consisting of a coplanar waveguide (CPW) inductively coupled to split ring resonators (SRR) and periodically loaded with narrow metallic wires is proposed. The wires make the structure behave as a microwave plasma with a negative effective permittivity which covers a broad frequency range. The negative permeability required to achieve left-handed wave propagation is provided by the rings in the vicinity of their resonant frequency. The result is a structure which allows negative wave propagation in a narrow frequency band. The transmission coefficient measured in a fabricated prototype device exhibits very low insertion losses in the pass band and high-frequency selectivity. Since rings are much smaller than signal wavelength at resonance and can be easily tuned, SRR-CPW-based structures are of interest for the design of very compact microwave circuits based on left handedness

    Single-Proton Removal Reaction Study of 16B

    Get PDF
    The low-lying level structure of the unbound system 16^{16}B has been investigated via single-proton removal from a 35 MeV/nucleon 17^{17}C beam. The coincident detection of the beam velocity 15^{15}B fragment and neutron allowed the relative energy of the in-flight decay of 16^{16}B to be reconstructed. The resulting spectrum exhibited a narrow peak some 85 keV above threshold. It is argued that this feature corresponds to a very narrow (Γ\Gamma \ll 100 keV) resonance, or an unresolved multiplet, with a dominant π(p3/2)1ν(d5/23)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^3)_{J=3/2^+} + π(p3/2)1ν(d5/22,s1/2)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^2,s_{1/2})_{J=3/2^+} configuration which decays by d-wave neutron emission.Comment: 16 pages, 5 figures, 1 table, submitted to Phys. Lett.

    Planar magnetoinductive wave transducers : theory and applications

    Get PDF
    Transduction of magnetoinductive waves (MIWs) in planar technology is demonstrated. A transducer consisting of a one-dimensional periodic array of metallic split squared ring resonators (SSRR), placed between a pair of microstrip lines on a planar substrate has been fabricated and measured. The microstrip lines are inductively coupled to the SSRRs located at the ends of the periodic array and excite MIWs that propagate along the array. The theoretical model for the dispersion of MIWs is used to predict the dispersion relation and the delay time in the device. The delay time was measured and a good agreement was found with the theoretical predictions. The transmission coefficient of the device was also measured. The theoretical and experimental results suggest that the proposed configuration can find application in the design of delay lines and other microwave devices. In fact, the behavior of the proposed transducer is similar to that of the conventional ferritemagnetostatic-wavetransducer. However, ferrite devices are fragile, difficult to integrate, and require a heavy external magnet or electromagnet to magnetize the ferrite to saturation. Since all these drawbacks are not present in the proposed configuration, it may be a useful alternative to those devices for many practical applications

    Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution

    Full text link
    Activated scaling is confirmed to hold in transverse field induced phase transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations have been made not just at the percolation threshold but well bellow and above it including the Griffiths-McCoy phase. A novel deactivation phenomena in the Griffiths-McCoy phase is observed using a thermal (in contrast to random) dilution of the system.Comment: 4 pages, 4 figures, RevTe

    Experimental verification of extraordinary transmission without surface plasmons

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.This letter provides an experimental demonstration of extraordinary transmission in a closed waveguide system loaded with an electrically small diaphragm. This is a situation where the standard surface plasmon polariton SPP theory does not apply. The theoretical explanation is then based on the concept of impedance matching. This concept has previously been applied by some of the authors to account for enhanced transmission in situations where surface plasmon theory can be used: periodic arrays of small holes or slits in flat metal screens. The experiment in this letter supports the impedance matching model, valid for when SPPs are present or not. © 2009 American Institute of PhysicsThe authors would like to acknowledge the support of this research by the Spanish Ministry of Science and Innovation and European Union Feder Funds Grant Nos. TEC2007-65376 and Consolider Ingenio 2010 CSD2008- 00066 and by the Spanish Junta de Andalucía Project No. TIC-25
    corecore