112 research outputs found
A survey of gas-side fouling in industrial heat-transfer equipment
Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area
Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments
The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified
An assessment of gas-side fouling in cement plants
The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling
Apparatus in the form of a disk for the separation of oxygen from other gases and/or for the pumping of oxygen and the method of removing the oxygen
An apparatus in the form of a disk for the separation of oxygen from gases, or for the pumping of oxygen, uses a substantially circular disk geometry for the solid electrolyte with radial flow of gas from the outside edge of the disk to the center of the disk. The reduction in available surface area as the gas flows toward the center of the disk reduces the oxygen removal area proportionally to provide for a more uniform removal of oxygen
Frontally mediated inhibitory processing and white matter microstructure: age and alcoholism effects
RationaleThe NOGO P3 event-related potential is a sensitive marker of alcoholism, relates to EEG oscillation in the δ and θ frequency ranges, and reflects activation of an inhibitory processing network. Degradation of white matter tracts related to age or alcoholism should negatively affect the oscillatory activity within the network.ObjectiveThis study aims to evaluate the effect of alcoholism and age on δ and θ oscillations and the relationship between these oscillations and measures of white matter microstructural integrity.MethodsData from ten long-term alcoholics to 25 nonalcoholic controls were used to derive P3 from Fz, Cz, and Pz using a visual GO/NOGO protocol. Total power and across trial phase synchrony measures were calculated for δ and θ frequencies. DTI, 1.5 T, data formed the basis of quantitative fiber tracking in the left and right cingulate bundles and the genu and splenium of the corpus callosum. Fractional anisotropy and diffusivity (λL and λT) measures were calculated from each tract.ResultsNOGO P3 amplitude and δ power at Cz were smaller in alcoholics than controls. Lower δ total power was related to higher λT in the left and right cingulate bundles. GO P3 amplitude was lower and GO P3 latency was longer with advancing age, but none of the time-frequency analysis measures displayed significant age or diagnosis effects.ConclusionsThe relation of δ total power at CZ with λT in the cingulate bundles provides correlational evidence for a functional role of fronto-parietal white matter tracts in inhibitory processing
Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial
Background
Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects.
Methods
FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762.
Findings
Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months.
Interpretation
Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function.
Funding
UK Stroke Association and NIHR Health Technology Assessment Programme
- …