251 research outputs found

    Proliferation of metallic domains caused by inhomogeneous heating near the electrically-driven transition in VO2_2 nanobeams

    Get PDF
    We discuss the mechanisms behind the electrically driven insulator-metal transition in single crystalline VO2_2 nanobeams. Our DC and AC transport measurements and the versatile harmonic analysis method employed show that non-uniform Joule heating causes phase inhomogeneities to develop within the nanobeam and is responsible for driving the transition in VO2_{2}. A Poole-Frenkel like purely electric field induced transition is found to be absent and the role of percolation near and away from the electrically driven transition in VO2_{2} is also identified. The results and the harmonic analysis can be generalized to many strongly correlated materials that exhibit electrically driven transitions

    Synthesis, Characterization, and Finite Size Effects on Electrical Transport of Nanoribbons of the Charge-Density Wave Conductor NbSe3

    Full text link
    NbSe3 exhibits remarkable anisotropy in most of its physical properties and has been a model system for studies of quasi-one-dimensional charge-density-wave (CDW) phenomena. Herein, we report the synthesis, characterization, and electrical transport of single-crystalline NbSe3 nanoribbons by a facile one-step vapour transport process involving the transport of selenium powder onto a niobium foil substrate. Our investigations aid the understanding of the CDW nature of NbSe3 and the growth process of the material. They also indicate that NbSe3 nanoribbons have enhanced CDW properties compared to those of the bulk phase due to size confinement effects, thus expanding the search for new mesoscopic phenomena at the nanoscale level. Single nanoribbon measurements on the electrical resistance as a function of temperature show charge-density wave transitions at 59 K and 141 K. We also demonstrate significant enhancement in the depinning effect and sliding regimes mainly attributed to finite size effects.Comment: Version accepted for publicatio

    A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection

    Get PDF
    Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4+ T cells, whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the expansion of either naive or effector/memory CD4+ T cells. Importantly, in vivo depletion of pDCs revealed that this subset was dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic, liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure

    A Study of the Diverse T Dwarf Population Revealed by WISE

    Full text link
    We report the discovery of 87 new T dwarfs uncovered with the Wide-field Infrared Survey Explorer (WISE) and three brown dwarfs with extremely red near-infrared colors that exhibit characteristics of both L and T dwarfs. Two of the new T dwarfs are likely binaries with L7+/-1 primaries and mid-type T secondaries. In addition, our follow-up program has confirmed 10 previously identified T dwarfs and four photometrically-selected L and T dwarf candidates in the literature. This sample, along with the previous WISE discoveries, triples the number of known brown dwarfs with spectral types later than T5. Using the WISE All-Sky Source Catalog we present updated color-color and color-type diagrams for all the WISE-discovered T and Y dwarfs. Near-infrared spectra of the new discoveries are presented, along with spectral classifications. To accommodate later T dwarfs we have modified the integrated flux method of determining spectral indices to instead use the median flux. Furthermore, a newly defined J-narrow index differentiates the early-type Y dwarfs from late-type T dwarfs based on the J-band continuum slope. The K/J indices for this expanded sample show that 32% of late-type T dwarfs have suppressed K-band flux and are blue relative to the spectral standards, while only 11% are redder than the standards. Comparison of the Y/J and K/J index to models suggests diverse atmospheric conditions and supports the possible re-emergence of clouds after the L/T transition. We also discuss peculiar brown dwarfs and candidates that were found not to be substellar, including two Young Stellar Objects and two Active Galactic Nuclei. The coolest WISE-discovered brown dwarfs are the closest of their type and will remain the only sample of their kind for many years to come.Comment: Accepted to ApJS on 15 January 2013; 99 pages in preprint format, 30 figures, 12 table

    The PTF Orion Project: a Possible Planet Transiting a T-Tauri Star

    Get PDF
    We report observations of a possible young transiting planet orbiting a previously known weak-lined T-Tauri star in the 7-10 Myr old Orion-OB1a/25-Ori region. The candidate was found as part of the Palomar Transient Factory (PTF) Orion project. It has a photometric transit period of 0.448413 +- 0.000040 days, and appears in both 2009 and 2010 PTF data. Follow-up low-precision radial velocity (RV) observations and adaptive optics imaging suggest that the star is not an eclipsing binary, and that it is unlikely that a background source is blended with the target and mimicking the observed transit. RV observations with the Hobby-Eberly and Keck telescopes yield an RV that has the same period as the photometric event, but is offset in phase from the transit center by approximately -0.22 periods. The amplitude (half range) of the RV variations is 2.4 km/s and is comparable with the expected RV amplitude that stellar spots could induce. The RV curve is likely dominated by stellar spot modulation and provides an upper limit to the projected companion mass of M_p sin i_orb < 4.8 +- 1.2 M_Jup; when combined with the orbital inclination, i orb, of the candidate planet from modeling of the transit light curve, we find an upper limit on the mass of the planetary candidate of M_p < 5.5 +- 1.4 M_Jup. This limit implies that the planet is orbiting close to, if not inside, its Roche limiting orbital radius, so that it may be undergoing active mass loss and evaporation.Comment: Corrected typos, minor clarifications; minor updates/corrections to affiliations and bibliography. 35 pages, 10 figures, 3 tables. Accepted to Ap

    First Light LBT AO Images of HR 8799 bcde at 1.65 and 3.3 Microns: New Discrepancies between Young Planets and Old Brown Dwarfs

    Full text link
    As the only directly imaged multiple planet system, HR 8799 provides a unique opportunity to study the physical properties of several planets in parallel. In this paper, we image all four of the HR 8799 planets at H-band and 3.3 microns with the new LBT adaptive optics system, PISCES, and LBTI/LMIRCam. Our images offer an unprecedented view of the system, allowing us to obtain H and 3.3$ micron photometry of the innermost planet (for the first time) and put strong upper-limits on the presence of a hypothetical fifth companion. We find that all four planets are unexpectedly bright at 3.3 microns compared to the equilibrium chemistry models used for field brown dwarfs, which predict that planets should be faint at 3.3 microns due to CH4 opacity. We attempt to model the planets with thick-cloudy, non-equilibrium chemistry atmospheres, but find that removing CH4 to fit the 3.3 micron photometry increases the predicted L' (3.8 microns) flux enough that it is inconsistent with observations. In an effort to fit the SED of the HR 8799 planets, we construct mixtures of cloudy atmospheres, which are intended to represent planets covered by clouds of varying opacity. In this scenario, regions with low opacity look hot and bright, while regions with high opacity look faint, similar to the patchy cloud structures on Jupiter and L/T transition brown-dwarfs. Our mixed cloud models reproduce all of the available data, but self-consistent models are still necessary to demonstrate their viability.Comment: Accepted to Ap

    Performance of the Gemini Planet Imager Non-Redundant Mask and spectroscopy of two close-separation binaries HR 2690 and HD 142527

    Full text link
    The Gemini Planet Imager (GPI) contains a 10-hole non-redundant mask (NRM), enabling interferometric resolution in complement to its coronagraphic capabilities. The NRM operates both in spectroscopic (integral field spectrograph, henceforth IFS) and polarimetric configurations. NRM observations were taken between 2013 and 2016 to characterize its performance. Most observations were taken in spectroscopic mode with the goal of obtaining precise astrometry and spectroscopy of faint companions to bright stars. We find a clear correlation between residual wavefront error measured by the AO system and the contrast sensitivity by comparing phase errors in observations of the same source, taken on different dates. We find a typical 5-σ\sigma contrast sensitivity of 23 × 1032-3~\times~10^{-3} at λ/D\sim\lambda/D. We explore the accuracy of spectral extraction of secondary components of binary systems by recovering the signal from a simulated source injected into several datasets. We outline data reduction procedures unique to GPI's IFS and describe a newly public data pipeline used for the presented analyses. We demonstrate recovery of astrometry and spectroscopy of two known companions to HR 2690 and HD 142527. NRM+polarimetry observations achieve differential visibility precision of σ0.4%\sigma\sim0.4\% in the best case. We discuss its limitations on Gemini-S/GPI for resolving inner regions of protoplanetary disks and prospects for future upgrades. We summarize lessons learned in observing with NRM in spectroscopic and polarimetric modes.Comment: Accepted to AJ, 22 pages, 14 figure

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape
    corecore