45 research outputs found

    Atmospheric Retrieval of L Dwarfs: Benchmarking Results and Characterizing the Young Planetary Mass Companion HD 106906 b in the Near-infrared

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0We present model constraints on the atmospheric structure of HD 106906 b, a planetary-mass companion orbiting at a ∼700 au projected separation around a 15 Myr old stellar binary, using the APOLLO retrieval code on spectral data spanning 1.1–2.5 μm. C/O ratios can provide evidence for companion formation pathways, as such pathways are ambiguous both at wide separations and at star-to-companion mass ratios in the overlap between the distributions of planets and brown dwarfs. We benchmark our code against an existing retrieval of the field L dwarf 2MASSW J2224–0158, returning a C/O ratio consistent with previous fits to the same JHK s data, but disagreeing in the thermal structure, cloud properties, and atmospheric scale height. For HD 106906 b, we retrieve C/O =0.53−0.25+0.15 , consistent with the C/O ratios expected for HD 106906's stellar association and therefore consistent with a stellar-like formation for the companion. We find abundances of H2O and CO near chemical equilibrium values for a solar metallicity but a surface gravity lower than expected, as well as a thermal profile with sharp transitions in the temperature gradient. Despite high signal-to-noise ratio and spectral resolution, more accurate constraints necessitate data across a broader wavelength range. This work serves as preparation for subsequent retrievals in the era of JWST, as JWST's spectral range provides a promising opportunity to resolve difficulties in fitting low-gravity L dwarfs and also underscores the need for simultaneous comparative retrievals on L-dwarf companions with multiple retrieval codes.Peer reviewe

    Realistic expectations for the treatment of FMGP residuals by chemical oxidants

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.jconhyd.2018.08.007 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Methods to remediate soil and groundwater contamination at former manufactured gas plant (FMGP) sites are scarce. The objective of this study was to investigate the ability of two chemical oxidants (persulfate and permanganate) to degrade FMGP residuals in a dynamic system representative of in situ conditions. A series of physical model trials supported by aqueous and slurry batch experiments using impacted sediments collected from a FMGP site were conducted. To explore treatment expectations a screening model constrained by the experimental data was employed. The results from the aqueous experiments showed that dissolved components (except for benzene) were readily degraded by persulfate or permanganate. In the well-mixed slurry systems, when contact with the oxidant was achieved, 95%, 45% and 30% of the initial mass quantified was degraded by permanganate, unactivated persulfate, and alkaline activated persulfate, respectively. In stark contrast, the total mass removed in the physical model trials was negligible for both permanganate and persulfate irrespective of the bleb or lense architecture used. Hence the net benefit of flushing 6 pore volumes of permanganate or persulfate at a concentration of 30 g/L under the physical model operating conditions was minimal. To achieve a substantial degradation of mass within the treatment system (>40%), results from the screening model indicated that the hydraulic resident time would need to be >10 days and the average lumped mass transfer coefficient increased by two orders-of-magnitude. Results from long-term (5 years) simulations showed that the dissolved concentrations of organic compounds are reduced temporarily as a result of the presence of permanganate but then rebound to a profile that is essentially coincident with a no-treatment scenario following exposure to permanganate. Neither a lower velocity nor higher permanganate dosing affected the long-term behavior of the dissolved phase concentrations; however, increasing the mass transfer rate coefficient had an impact. The findings from this investigation indicate that the efficiency of permanganate or persulfate to treat for FMGP residuals is mass transfer limited.TECO Peoples Gas, Tampa FLNatural Sciences and Engineering Research Council (NSERC) of Canada Collaborative Research and Development Gran

    Probing the Substellar Regime with SIRTF

    Get PDF
    One of the main scientific drivers of the Space InfraRed Telescope Facility (SIRTF) is the search for brown dwarfs and extrasolar superplanets. We discuss observational strategies for identification of these objects, and conclude that an optimal strategy is a wide IRAC survey (18 deg2^2) with a 5 σ\sigma sensitivity of 3.9 μ\muJy in channel 2 (M∼19.1m\sim19.1^m). For this sensitivity, we provide estimates of the number of low mass brown dwarfs and isolated planets detected per square degree for power-law mass functions with α\alpha=1.5, and 1.0. Shallower surveys covering a larger area are inefficient because of large overheads and detector noise. Deeper surveys covering a smaller area become more and more affected by crowding with galaxies. A survey like the one that we propose would determine the field mass function down to a few Jupiter masses through the identification of a large sample of brown dwarfs and isolated planets. The proposed SIRTF survey would also allow the first detection of ultracool substellar objects with temperatures between 700 K and 200 K. The cooling curves of substellar objects with masses less than 20 Jupiters imply that they should spend most of their lifetimes at temperatures below 700 K. Preliminary models indicate that their atmospheres could be dominated by water clouds, which would diminish their optical and near-infrared fluxes. The properties of those objects are still completely unexplored.Comment: 7 pages, 6 figures, submitted to PAS

    Keys of a Mission to Uranus or Neptune, the Closest Ice Giants

    Get PDF
    Uranus and Neptune are the archetypes of "ice giants", a class of planets that may be among the most common in the Galaxy. They are the last unexplored planets of the Solar System, yet they hold the keys to understand the atmospheric dynamics and structure of planets with hydrogen atmospheres inside and outside the solar system

    The Need for Laboratory Measurements and Ab Initio Studies to Aid Understanding of Exoplanetary Atmospheres

    Full text link
    We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize their atmospheric structure, composition, and circulation, from gas giants to rocky planets. However, exoplanet atmospheric models capable of interpreting the upcoming observations are often limited by insufficiencies in the laboratory and theoretical data that serve as critical inputs to atmospheric physical and chemical tools. Here we provide an up-to-date and condensed description of areas where laboratory and/or ab initio investigations could fill critical gaps in our ability to model exoplanet atmospheric opacities, clouds, and chemistry, building off a larger 2016 white paper, and endorsed by the NAS Exoplanet Science Strategy report. Now is the ideal time for progress in these areas, but this progress requires better access to, understanding of, and training in the production of spectroscopic data as well as a better insight into chemical reaction kinetics both thermal and radiation-induced at a broad range of temperatures. Given that most published efforts have emphasized relatively Earth-like conditions, we can expect significant and enlightening discoveries as emphasis moves to the exotic atmospheres of exoplanets.Comment: Submitted as an Astro2020 Science White Pape

    UK General Population Utility Values for the SIDECAR-D Instrument Measuring the Impact of Caring for People With Dementia

    Get PDF
    Objectives: Dementia affects many people, with numbers expected to grow as populations age. Many people with dementia receive informal/family/unpaid care, for example, from a spouse or child, which may affect carer quality of life. Measuring the effectiveness of health/social care interventions for carers requires a value measure of the quality-of-life impact of caring. This motivated development of the Scales Measuring the Impact of Dementia on Carers-D (SIDECAR-D) instrument. This study aimed to obtain general population values for SIDECAR-D to aid incorporating the impact of caring in economic evaluation. Methods: Members of the UK general public completed a best–worst scaling object case survey, which included the 18 SIDECAR-D items and EQ-5D-3L descriptions. Responses were analyzed using scale-adjusted finite mixture models. Relative importance scores (RISs) for the 18 SIDECAR-D items formed the SIDECAR-D relative scale measuring the relative impact of caring. The SIDECAR-D tariff, on the full health = 1, dead = 0 scale, was derived by rescaling EQ-5D-3L and SIDECAR-D RISs so the EQ-5D-3L RISs equaled anchored valuations of the EQ-5D-3L pits state from a visual analog scale task. Results: Five hundred ten respondents completed the survey. The model had 2 parameter and 3 scale classes. Additive utility decrements of SIDECAR-D items ranged from –0.05 to –0.162. Utility scores range from 0.95 for someone affirming 1 item to –0.297 for someone affirming all 18. Conclusion: SIDECAR-D is a needs-based scale of the impact on quality of life of caring for someone with dementia, with a valuation tariff to support its use in economic evaluation

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    Get PDF
    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist
    corecore