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Keys of a Mission to Uranus or Neptune, the Closest Ice Giants

U ranus and Neptune are the archetypes of "ice giants", a class of planets that may
be among the most common in the Galaxy. They hold the keys to understand
the atmospheric dynamics and structure of planets with hydrogen atmospheres

inside and outside the solar system; however, they are also the last unexplored planets
of the Solar System. Their atmospheres are active and storms are believed to be fueled
by methane condensation which is both extremely abundant and occurs at low optical
depth. This means that mapping temperature and methane abundance as a function
of position and depth will inform us on how convection organizes in an atmosphere
with no surface and condensates that are heavier than the surrounding air, a general
feature of giant planets. Owing to the spatial and temporal variability of these atmo-
spheres, an orbiter is required. A probe would provide a reference atmospheric profile
to lift ambiguities inherent to remote observations. It would also measure the abun-
dances of noble gases which can be used to reconstruct the history of planet formation
in the Solar System. Finally, mapping the planets’ gravity and magnetic fields will be
essential to constrain their global composition, atmospheric dynamics, structure and
evolution. An exploration of Uranus or Neptune will be essential to understand these
planets and will also be key to constrain and analyze data obtained at Jupiter, Saturn,
and for numerous exoplanets with hydrogen atmospheres.

1 Introduction
Admittedly, “ice giants” form a yet not well-defined class of planets between a few times the
mass of the Earth and a fraction of that of Saturn. Their name comes from the idea that
their mass mostly originates from condensed water ice that accreted in protoplanetary disks.
The large amount of water ice led them to become more massive than traditional terrestrial
planets but yet without accreting so much hydrogen and helium to fall into the realm of the
larger "gas giants". This idea is plausible, because water is the most abundant condensable
species and certainly the most crucial building block of planet formation(1). However, it is
unproven and we do not know whether our own ice giants, Uranus and Neptune, are mostly
made of H2O or whether they may be formed of more “rocks” (more refractory species) than
“ices” (e.g. 2, 3). Recently, detailed analysis of the Kepler survey have shown that planets in
the ice giant mass regime may be the most abundant class of planets in our Galaxy (4).

Yet, the ice giants closest to us, Uranus and Neptune, have never been studied by orbiting
spacecrafts. Contrary to all other planets in the solar system, they have only been visited for
a couple of days each and from a distance by the Voyager 2 spacecraft flybys.

Both Uranus and Neptune are fascinating planets that hold some of the keys to understand
the origin of our Solar System and to make sense of the observations of exoplanetary
atmospheres. As seen in Fig. 1, they both have active, complex atmospheres, observed and
monitored by professional and amateurs alike. We advocate that the exploration of our
Solar System must continue and that either Uranus or Neptune, or both, should be the next
targets in this journey that will ultimately help us to understand exoplanets as well.

2 Keys to understanding hydrogen atmospheres
Two major particularities of the atmospheres of giant planets are the absence of a surface and
the fact that condensates are heavier than surrounding gas, creating a meteorological regime
that is intrinsically different from that of terrestrial planets: Moisture tends to sink instead
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Figure 1: Images of Uranus and Neptune showing seasons and storms. The HST/STIS images of Uranus
correspond to H band (left) and false color (right) images (5). Amateur images from the Pic du
Midi, D. Peach and M. Lewis have been taken from the PVOL database (http://pvol2.ehu.eus/).
The images of Neptune have been obtained from HST/WFPC2 in the visible (6).

of rising, and with no surface, it is not clear how deep condensing species will sink. In spite
of this, since these planets are convective and storms are regularly observed, the prevailing
view has been that this is a minor effect that can be largely ignored: Convective motions
should homogenize composition below the condensation level (the “cloud base”) and latent
heat effects should lead to powerful storms capable of an efficient upward transport of
condensable species. The Galileo probe measurements (7) and the Juno measurements (8,
9) have shown that this view is at best incomplete and perhaps altogether wrong.

There is now ample evidence that the two major condensing species in Jupiter’s atmo-
sphere, water and ammonia, have spatially variable abundances much below their condensa-
tion level. In Jupiter, water was found to be subsolar in a hot spot by in situ measurements
of the Galileo probe down to at least 20 bar (7), but is also significantly sub-saturated at
other locations (e.g., 10), while it is nearly saturated and at least solar in the Great Red
Spot (11) and in the equatorial zone (12). Ammonia has long been found depleted in large
regions of Jupiter down to several bars at least (13, 14), but it has now been found to be
variable much deeper, down to 30 bars or more (8, 9). In Saturn, there is also evidence
of large-scale latitudinal variations in the ammonia abundance, similar to Jupiter (15),
potentially influenced by the decade-scale compositional and thermal changes within the
intermittent convective cycle (16).

Deep variability of volatiles on Jupiter and Saturn is an issue not only for constraining bulk
composition, but also for interior and evolutionary models of the entire class of planets with
hydrogen atmospheres. The assumption of a uniform upper boundary for one-dimensional
models is largely validated by observed one-bar temperature fluctuations in Jupiter and
Saturn of a few percent at most (e.g. 17, 18). But what happens deeper is not clear.
The abundance variations in ammonia and water indicate that large regions must be on
average stable to convection. Storms, in particular water storms, appear to be essential for
transporting the interior heat flux (19). For large abundances of condensing species, the
temperature profile is unknown (20–22). Variability in heat transport and cooling raise the
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possibility that 2D/3D models of the deeper interior may be needed to infer the planet’s
structure and evolution.

These issues are not confined to ammonia and water. They extend to any condensing
species with an abundance that is large enough to affect energy transfer. Importantly, this is
the case of helium which is known to separate from hydrogen at Mbar regions in Jupiter
and Saturn (e.g. 23, 24).

Understanding how hydrogen atmospheres transport heat and elements is a formidable
task. It involves multiple scales, from the global scale (i.e., the size of the planet itself, ∼
100, 000 km) to the sizes of storms (∼ 1− 100 km) and includes complex hydrodynamics and
microphysics. Global circulation models (GCMs) (e.g. 25–28) are challenging computational
endeavors, particularly for planets with deep atmospheres, and thus must simplify the
treatment of convective storms and clouds. Cloud or cloud-ensemble models (e.g. 29–31) do
not include meridional motions and/or global scale winds. Detailed microphysical treatments
(e.g. 32) are based on the Earth’s schemes and must be extrapolated to be applied to the
giant planets. Therefore, numerical simulations can only guide us on what may be occurring
in these atmospheres. We need ground truth.

Unfortunately, the measurements required to give new insight are scarce because in
Jupiter and Saturn most of the action occurs hidden from view at large optical depth. The
ammonia condensation region near 0.7 bar in Jupiter and 1.5 bar in Saturn is observable,
but ammonia has a low abundance (∼ 100 to 500 ppmv mixing ratio) and can only drive a
weak moist convection (e.g. 33). Instead, most of the storms that we see must be powered by
water condensation (see 29–31, 34), at levels of ∼ 6 bar in Jupiter and ∼ 12 bar in Saturn.
Juno’s MWR instrument was able to probe these regions and deeper in Jupiter but the
measurements are mostly sensitive to ammonia’s absorption, now believed to be a complex
function of depth, latitude and possibly even longitude (9). The effect of water is indirect.
Finally, we lack a well-defined temperature pressure profile that would allow lifting some of
the degeneracies in the measurements.

Uranus and Neptune possess one key ingredient to understand atmospheric dynamics
in hydrogen atmospheres: They are cold enough for methane to condense at low pressure
levels ∼ 1.5 bar (35), in a region of the troposphere at modest optical depth, and methane is
present in abundance to drive moist convection at these levels (36). Methane is extremely
abundant and its abundance is variable with latitude. The maximum mixing ratio in Uranus
inferred from HST, Keck and IRTF observations is fCH4 = 2.55% to 3.98% (5). In Neptune,
the maximum value detected with VLT/MUSE at a latitude 30◦S is even higher, fCH4 =
5.90± 1.07% (37). Thus, for both planets, methane accounts for 15% to 30% of the mass in
the upper atmosphere, higher but comparable to the expected 2% to 10% for water in Jupiter
and Saturn. The study of methane condensation in Uranus and Neptune can therefore be
used to understand moist convection in general, and particularly in this difficult regime
where it is inhibited by the molecular weight (20).

3 Exoplanets: an expanding dataset
We are now about 20-25 years into work characterizing the physics of giant exoplanets.
Transiting giant planets in particular have allowed for an assessment of giant planet thermal
evolution, atmospheric composition, and atmospheric dynamics under strong stellar forcing.
The next decade of this science will be truly transformational, with the continuation of
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TESS and the rise of JWST, ARIEL, PLATO, and high-resolution spectrographs on planned
Extremely Large Telescopes (ELTs). Planets between the sizes of Earth and Neptune are
the most abundant yet found, and will see a dramatic improvement in their atmospheric
characterization. Models suggest that planets in ∼ 2 − 4 Earth radius regime harbor
a hydrogen-dominated atmosphere (38), and such planets will be excellent targets for
atmospheric study.

Observers will work to understand atmospheric circulation, including wind speeds, hot
spot offsets, and day-night temperature contrasts. Atmospheric composition, via spectroscopy
of H2O, CO, CO2, CH4, NH3, and a wide variety of atomic metals in the hottest planets, will
dramatically alter our view of giant planet atmospheric abundances. A number of theoretical
works have aimed to tie, for instance, C, O, (and N) abundances to the distance of formation
within the disk and the relative accretion of solids and gas (39, 40). Just like the field of
exoplanet structure and bulk composition has moved into the realm of statistical studies of
larger samples (41, 42), which will further expand, the same will be true of many aspects of
exoplanet atmospheres (e.g., 43).

However, detailed understanding of the solar system’s giant planets provides the only
context for these statistical studies. For instance, there is now clearly tension between the
simple internal structure models applied to hot Jupiters (e.g., 41) and the newest insights
from Jupiter/Juno (44) and Saturn/Cassini (45) that suggest dilute cores. Future exoplanet
work will incorporate these lessons, and we see a similar path for detailed knowledge of the
atmosphere and interior structure of Uranus and Neptune.

JWST and ARIEL will lead to far more robust assessments of atmospheric dynamics
and abundances, compared to previous efforts with Spitzer and Hubble. It seems assured
that results from exoplanet phase curves and spectroscopy will show shortcomings in the
relatively simple atmospheric models that have been applied to these planets so far. While
the past two decades have seen advances in the characterization of exoplanets close to
their star, present and future missions will enable characterizing the atmospheres of cooler
planets. Already, this is exemplified by initial observational studies of K2-18 b, a planet with
a hydrogen atmosphere possibly containing water vapor in the habitable zone of its star (46,
47). System age will also be a new axis to study.

Direct spectral imaging also allows characterization of exoplanetary atmospheres at
greater orbital distances, more similar to the heliocentric distances of our ice giants. With
current technology, directly imaged expolanets are young (hot), so characterizing them
requires accurate thermal evolution models that benefit from solar system constraints (48).

GCMs have been shown to be crucial to interpret the cooling and contraction of fluid
planets (49, 50), their phase curves (51–53), chemistry and cloud structure (54–56). The
possibility to study temperate planets will add another layer of complexity due to the
additional time variability introduced by storms powered by condensation, as already seen
in the case of cool brown dwarfs (57). Information on the spatial distribution of these
structures can be retrieved (58, 59) but spatial information will remain very limited. In this
context, having the possibility to validate cloud ensemble models and GCMs for hydrogen
atmospheres against detailed observations of solar system giant planets, in particular those
for Uranus or Neptune, appear essential for further progress.
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Figure 2: Understanding the compositions, interior structure, evolution and formation of giant planets
requires information from many different sources. The exploration of Uranus and Neptune
provides essential pieces of that puzzle, bridging a gap between gas giants Jupiter and Saturn
and exoplanets.

4 Keys to the formation of giant planets
Several planetary embryos of sizes comparable to those of Uranus and Neptune may have
existed even when Jupiter and Saturn had already reached their final mass (e.g., 60). Planets
of similar masses and/or radii abound in the Universe (4), and can start to be characterized
(e.g., 61). But rather than a connection based on the mass or sizes of the planets, a key
to an Uranus or Neptune mission is that the findings apply to all planets with hydrogen
atmospheres, particularly those for which we expect molecular weight gradients to be an
important part of their structure and evolution, such as super-Earths with hydrogen rich
atmospheres (e.g. 62, 63). Knowing how heat and chemicals are transported in Uranus and
Neptune’s atmospheres will provide us with the tools to interpret future spectra of spatially
unresolved exoplanets with hydrogen atmospheres.

As shown in Fig. 2, understanding the formation of giant planets requires combining
information obtained from different approaches. Missions around Jupiter and Saturn such
as Juno and Cassini have lifted some of the veils on the complexity of the atmospheres of
these planets and of their deep structure, including the presence of deep zonal flows (e.g
64–67), inhomogeneities of their envelopes (44, 68, 69), and evidence for stable regions
(70). But, as discussed in Section 2, heat transport in the presence of condensates remains
poorly understood. Observations of exoplanets will provide statistical information on global
compositions, wind speeds, variability, but will lack the details that are available for the solar
system planets. These details are crucial to constrain simulations of atmospheric dynamics
that can then be applied to non-resolved exoplanets. This will become particularly important
for temperate exoplanets (in particular when water condenses, because of its role in fueling
storms) and for ice giants (due to the higher abundances of heavy elements and higher
degeneracy in the interior structure).
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Detailed characterization of Uranus or Neptune by an orbiter and a planetary probe is key.
First, the determination of atmospheric dynamics fueled by abundant methane condensation
will be crucial to determine the frequency, depth and temperature profiles associated to
convective events. Variations of abundances and temperatures in latitude and longitude
(for example associated to large-scale circulation, vortex formation and waves) and their
variability should be determined. This will be particularly important to determine whether
the deep atmosphere is relatively homogeneous in entropy and validate (or not) the 1D
approach to the interior structure.

Questions of the deep interior structure, magnetic field, and rotation rate are also
paramount to our understanding. The planetary rotation rates are in question (71), interior
models are extremely poorly constrained (72), only an upper limit on wind depth was
determined (73) and we do not know where the magnetic field is generated (74, 75). These
can all be addressed by precise measurements of the gravity and magnetic fields.

The evolution of Uranus and Neptune themselves, with Uranus having an order of
magnitude smaller intrinsic heat flux than Neptune (76) remains a mystery. We do not
have the solution, but it certainly requires a complete understanding of heat transfer in
these planets’ atmospheres. Being able to better spot the difference in internal structures of
Uranus and Neptune, as determined from the measurement of their gravitational moments
and magnetic fields will be crucial.

Finally, some measurements performed in Uranus and Neptune can help reconstruct
the history of the formation of the Solar System. Noble gases, which cannot be seen via
remote sensing, are particularly important because they could only be trapped at very low
temperatures in the protosolar disk. Their abundance in the atmospheres of Uranus and
Neptune compared to that in Jupiter would be an essential piece of the puzzle to determine
e.g. whether photoevaporation in the late solar system or clathrate formation may have
taken place (77–79).

The knowledge gained in understanding Uranus and Neptune can be directly applied to
known exoplanets. It will also be essential to understand the early stages of planet formation,
when planetary embryos should possess a hydrogen atmosphere that is polluted with heavy
elements. In particular water, ammonia and methane are expected to have a large impact
on the cooling and the final properties of these forming planets (80). Combining knowledge
obtained for Jupiter, Saturn, and numerous exoplanets to the information gained from a
mission to Uranus or Neptune will allow a complete picture to understand planets with
hydrogen atmospheres.

5 Conclusion
Uranus and Neptune hold some of the keys to understand planets with hydrogen atmospheres,
finalize the inventory of the Solar System, and infer the history of its formation. A dual
mission with an orbiter and a probe, to either planet, reaching all the objectives described in
this proposal would be best achieved through an international collaboration. The experience
with Juno has shown that this may be possible within the New Frontier cap and we thus
encourage NASA and other partners such as ESA and JAXA to develop a process by which
they can partner more easily. Such a mission will be a much awaited milestone in the
exploration of our Solar System and will provide the tools needed for the interpretation of
observations of planets in our Galaxy.
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