42 research outputs found

    Dust in the wind: Crystalline silicates, corundum and periclase in PG 2112+059

    Full text link
    We have determined the mineralogical composition of dust in the Broad Absorption Line (BAL) quasar PG 2112+059 using mid-infrared spectroscopy obtained with the Spitzer Space Telescope. From spectral fitting of the solid state features, we find evidence for Mg-rich amorphous silicates with olivine stoichiometry, as well as the first detection of corundum (Al_2O_3) and periclase (MgO) in quasars. This mixed composition provides the first direct evidence for a clumpy density structure of the grain forming region. The silicates in total encompass 56.5% of the identified dust mass, while corundum takes up 38 wt.%. Depending on the choice of continuum, a range of mass fractions is observed for periclase ranging from 2.7% in the most conservative case to 9% in a less constrained continuum. In addition, we identify a feature at 11.2 micron as the crystalline silicate forsterite, with only a minor contribution from polycyclic aromatic hydrocarbons. The 5% crystalline silicate fraction requires high temperatures such as those found in the immediate quasar environment in order to counteract rapid destruction from cosmic rays.Comment: 2 figure

    Determining the forsterite abundance of the dust around Asymptotic Giant Branch stars

    Get PDF
    Aims. We present a diagnostic tool to determine the abundance of the crystalline silicate forsterite in AGB stars surrounded by a thick shell of silicate dust. Using six infrared spectra of high mass-loss oxygen rich AGB stars we obtain the forsterite abundance of their dust shells. Methods. We use a monte carlo radiative transfer code to calculate infrared spectra of dust enshrouded AGB stars. We vary the dust composition, mass-loss rate and outer radius. We focus on the strength of the 11.3 and the 33.6 \mu m forsterite bands, that probe the most recent (11.3 \mu m) and older (33.6 \mu m) mass-loss history of the star. Simple diagnostic diagrams are derived, allowing direct comparison to observed band strengths. Results. Our analysis shows that the 11.3 \mu m forsterite band is a robust indicator for the forsterite abundance of the current mass-loss period for AGB stars with an optically thick dust shell. The 33.6 \mu m band of forsterite is sensitive to changes in the density and the geometry of the emitting dust shell, and so a less robust indicator. Applying our method to six high mass-loss rate AGB stars shows that AGB stars can have forsterite abundances of 12% by mass and higher, which is more than the previously found maximum abundance of 5%.Comment: Accepted for publication in A&

    Spitzer detections of new dust components in the outflow of the Red Rectangle

    Full text link
    We present Spitzer high spectral resolution IRS spectroscopy of three positions in the carbon-rich outflow of post-AGB star HD 44179, better known as the Red Rectangle. Surprisingly, the spectra show some strong unknown mid-infrared resonances, in the 13-20 micron range. The shape and position of these resonances varies with position in the nebula, and are not correlated with the PAH features. We conclude these features are due to oxygen-rich minerals, located in a region which is believed to be predominantly carbon-rich. We provide possible explanations for the presence of oxygen-rich dust in the carbon-rich outflows. Simple Mg-Fe-oxides are suggested as carriers of these unidentified features.Comment: accepted by ApJL; 5 pages; 4 figure

    The variable mass loss of the AGB star WX Psc as traced by the CO J=1-0 through 7-6 lines and the dust emission

    Full text link
    Low and intermediate mass stars lose a significant fraction of their mass through a dust-driven wind during the Asymptotic Giant Branch (AGB) phase. Recent studies show that winds from late-type stars are far from being smooth. Mass-loss variations occur on different time scales, from years to tens of thousands of years. The variations appear to be particularly prominent towards the end of the AGB evolution. The occurrence, amplitude and time scale of these variations are still not well understood. The goal of our study is to gain insight into the structure of the circumstellar envelope (CSE) of WX Psc and map the possible variability of the late-AGB mass-loss phenomenon. We have performed an in-depth analysis of the extreme infrared AGB star WX Psc by modeling (1) the CO J=1-0 through 7-6 rotational line profiles and the full spectral energy distribution (SED) ranging from 0.7 to 1300 micron. We hence are able to trace a geometrically extended region of the CSE. Both mass-loss diagnostics bear evidence of the occurrence of mass-loss modulations during the last ~2000 yr. In particular, WX Psc went through a high mass-loss phase (Mdot~5e-5 Msun/yr) some 800 yr ago. This phase lasted about 600 yr and was followed by a long period of low mass loss (Mdot~5e-8 Msun/yr). The present day mass-loss rate is estimated to be ~6e-6 Msun/yr. The AGB star WX Psc has undergone strong mass-loss rate variability on a time scale of several hundred years during the last few thousand years. These variations are traced in the strength and profile of the CO rotational lines and in the SED. We have consistently simulated the behaviour of both tracers using radiative transfer codes that allow for non-constant mass-loss rates.Comment: 12 pages, accepted for publication in A&

    The shape and composition of interstellar silicate grains

    Get PDF
    We investigate the composition and shape distribution of silicate dust grains in the interstellar medium. The effect of the amount of magnesium in the silicate lattice is studied. We fit the spectral shape of the interstellar 10 mu extinction feature as observed towards the galactic center. We use very irregularly shaped coated and non-coated porous Gaussian Random Field particles as well as a statistical approach to model shape effects. For the dust materials we use amorphous and crystalline silicates with various composition and SiC. The results of our analysis of the 10 mu feature are used to compute the shape of the 20 mu silicate feature and to compare this with observations. By using realistic particle shapes we are, for the first time, able to derive the magnesium fraction in interstellar silicates. We find that the interstellar silicates are highly magnesium rich (Mg/(Fe+Mg)>0.9) and that the stoichiometry lies between pyroxene and olivine type silicates. This composition is not consistent with that of the glassy material found in GEMS in interplanetary dust particles indicating that these are, in general, not unprocessed remnants from the interstellar medium. Also, we find a significant fraction of SiC (~3%). We discuss the implications of our results for the formation and evolutionary history of cometary and circumstellar dust. We argue that the fact that crystalline silicates in cometary and circumstellar grains are almost purely magnesium silicates is a natural consequence of our findings that the amorphous silicates from which they were formed were already magnesium rich.Comment: Accepted for publication in A&

    Mid-infrared spectra of PAH emission in Herbig AeBe stars

    Full text link
    We present spectra of four Herbig AeBe stars obtained with the Infrared Spectrograph (IRS). on the Spitzer Space Telescope. All four of the sources show strong emission from polycyclic aromatic hydrocarbons (PAHs), with the 6.2 um emission feature shifted to 6.3 um and the strongest C-C skeletal-mode feature occuring at 7.9 um instead of at 7.7 um as is often seen. Remarkably, none of the four stars have silicate emission. The strength of the 7.9 um feature varies with respect to the 11.3 um feature among the sources, indicating that we have observed PAHs with a range of ionization fractions. The ionization fraction is higher for systems with hotter and brighter central stars. Two sources, HD 34282 and HD 169142, show emission features from aliphatic hydrocarbons at 6.85 and 7.25 um. The spectrum of HD 141569 shows a previously undetected emission feature at 12.4 um which may be related to the 12.7 um PAH feature. The spectrum of HD 135344, the coolest star in our sample, shows an unusual profile in the 7-9 um region, with the peak emission to the red of 8.0 um and no 8.6 um PAH feature.Comment: Accepted by ApJ 23 June, 2005, 8 pages (emulateapj), 5 figures (3 in color

    Spitzer SAGE survey of the Large Magellanic Cloud II: Evolved Stars and Infrared Color Magnitude Diagrams

    Get PDF
    Color-magnitude diagrams (CMDs) are presented for the Spitzer SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Large Magellanic Cloud (LMC). IRAC and MIPS 24 um epoch one data are presented. These data represent the deepest, widest mid-infrared CMDs of their kind ever produced in the LMC. Combined with the 2MASS survey, the diagrams are used to delineate the evolved stellar populations in the Large Magellanic Cloud as well as Galactic foreground and extragalactic background populations. Some 32000 evolved stars brighter than the tip of the red giant branch are identified. Of these, approximately 17500 are classified as oxygen-rich, 7000 carbon-rich, and another 1200 as ``extreme'' asymptotic giant branch (AGB) stars. Brighter members of the latter group have been called ``obscured'' AGB stars in the literature owing to their dusty circumstellar envelopes. A large number (1200) of luminous oxygen--rich AGB stars/M supergiants are also identified. Finally, there is strong evidence from the 24 um MIPS channel that previously unexplored, lower luminosity oxygen-rich AGB stars contribute significantly to the mass loss budget of the LMC (1200 such sources are identified).Comment: LaTex, 31 pages, 10 figures. Accepted for publication in the Astronomical Journa

    Prospects for Studies of Stellar Evolution and Stellar Death in the JWST Era

    Full text link
    I review the prospects for studies of the advanced evolutionary stages of low-, intermediate- and high-mass stars by the JWST and concurrent facilities, with particular emphasis on how they may help elucidate the dominant contributors to the interstellar dust component of galaxies. Observations extending from the mid-infrared to the submillimeter can help quantify the heavy element and dust species inputs to galaxies from AGB stars. JWST's MIRI mid-infrared instrument will be so sensitive that observations of the dust emission from individual intergalactic AGB stars and planetary nebulae in the Virgo Cluster will be feasible. The Herschel Space Observatory will enable the last largely unexplored spectral region, the far-IR to the submillimeter, to be surveyed for new lines and dust features, while SOFIA will cover the wavelength gap between JWST and Herschel, a spectral region containing important fine structure lines, together with key water-ice and crystalline silicate bands. Spitzer has significantly increased the number of Type II supernovae that have been surveyed for early-epoch dust formation but reliable quantification of the dust contributions from massive star supernovae of Type II, Type Ib and Type Ic to low- and high-redshift galaxies should come from JWST MIRI observations, which will be able to probe a volume over 1000 times larger than Spitzer.Comment: 24 pages, 19 figures. To appear in `Astrophysics in the Next Decade: JWST and Concurrent Facilities' (JWST Conference Proceedings), edited by H. A. Thronson, M. Stiavelli and A. G. G. M. Tielens; Springer Series: Astrophysics and Space Science Proceeding

    Early results from the SAGE-SMC Spitzer legacy

    Get PDF
    Early results from the SAGE-SMC (Surveying the Agents of Galaxy Evolution in the tidally-disrupted, low-metallicity Small Magellanic Cloud) Spitzer legacy program are presented. These early results concentrate on the SAGE-SMC MIPS observations of the SMC Tail region. This region is the high H i column density portion of the Magellanic Bridge adjacent to the SMC Wing. We detect infrared dust emission and measure the gas-to-dust ratio in the SMC Tail and find it similar to that of the SMC Body. In addition, we find two embedded cluster regions that are resolved into multiple sources at all MIPS wavelengths. © 2009 International Astronomical Union
    corecore