73 research outputs found

    Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature

    Get PDF
    International audienceRetention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultra-high vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 10^17 -10^21 D+/m^2 range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention = fluence^ 0.645±0.025 relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption

    Deuterium retention and transport in ion-irradiated tungsten exposed to deuterium atoms: role of grain boundaries

    Get PDF
    The influence of grain boundaries on deuterium (D) retention and transport was investigated in nanocrystalline tungsten (W) by exposing the samples to sub eV D atoms. Thin tungsten films with nanometer-sized grains were produced by pulsed laser deposition on tungsten substrates. Their grain size was increased up to one micrometer by thermal annealing in vacuum up to 1223 K. Irradiation damage was created by 20 MeV W ions at 290 K. The transmission electron microscopy analysis showed one order of magnitude larger dislocation density in nanometer-grained samples compared with the larger-grained samples. The samples were after W irradiation exposed to 0.3 eV D atoms at 600 K. D retention and D depth profiles were measured by nuclear reaction analysis. In the as-deposited nanometer-grained samples, D populated the damaged region more than three times faster than in the samples with larger grains, indicating that grain-boundaries increase D transport through the material. The concentration of defects was assessed by the final D concentration in the samples. The sample with the smallest grain size showed slightly larger D concentration in the irradiated area, but the difference in the D concentration was not substantial between different-grained samples. A large D concentration in the non-irradiated nanometer-grained sample was measured which is an indication for a high defect density in the initial material. From our observations, it can be postulated that the nanocrystalline microstructure did not substantially influence the generation of irradiation-induced defects by defect annihilation at grain boundaries

    Influence of surface morphology on erosion of plasma-facing components in H-mode plasmas of ASDEX Upgrade

    Get PDF
    Net erosion of plasma-facing materials was investigated at the low-field-side (outer) strike-point area of the ASDEX Upgrade (AUG) divertor during H-mode discharges with small and frequent ELMs. To this end, Au and Mo marker samples with different surface morphologies and geometries were exposed to plasmas using the DIMII divertor manipulator. The results were compared to existing erosion and deposition patterns from various Land H-mode experiments, in the latter case the main difference was the size and frequency of the ELMs. We noticed that increasing surface roughness reduces net erosion but less than what is the case in L-mode. On the other hand, net-erosion rates in H-mode are generally 2–5 times higher than the corresponding L-mode values, in addition to which exposure in H-mode conditions results in strong local variations in the poloidal and toroidal erosion/deposition profiles. The latter observation we associate with the large migration length, on the order of several cm, of the eroded material, resulting in strong competition between erosion and re-deposition processes especially at poloidal distances > 50 mm from the strike point. Considerable net erosion was measured throughout the analysed poloidal region unlike in L-mode where the main erosion peak occurs in the vicinity of the strike point. We attribute this qualitative difference to the slow decay lengths of the plasma flux and electron temperature in the applied H-mode scenario. Both erosion and deposition require detailed analyses at the microscopic scale and the deposition patterns may be drastically different for heavy and light impurities. Generally, the rougher the surface the more material will accumulate on locally shadowed regions behind protruding surface features. However, rough surfaces also exhibit more non-uniformities in the quality or even integrity of marker coatings produced on them, thus complicating the analyses of the experimental data. We conclude that local plasma parameters have a huge impact on the PFC erosion rates and, besides incident plasma flux, surface morphology and its temporal evolution have to be taken into account for quantitative estimates of erosion rates and PFC lifetime under reactor-relevant conditions

    Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery

    Get PDF
    Purpose Joint fractures must be accurately reduced minimising soft tissue damages to avoid negative surgical outcomes. To this regard, we have developed the RAFS surgical system, which allows the percutaneous reduction of intra-articular fractures and provides intra-operative real-time 3D image guidance to the surgeon. Earlier experiments showed the effectiveness of the RAFS system on phantoms, but also key issues which precluded its use in a clinical application. This work proposes a redesign of the RAFS’s navigation system overcoming the earlier version’s issues, aiming to move the RAFS system into a surgical environment. Methods The navigation system is improved through an image registration framework allowing the intra-operative registration between pre-operative CT images and intra-operative fluoroscopic images of a fractured bone using a custom-made fiducial marker. The objective of the registration is to estimate the relative pose between a bone fragment and an orthopaedic manipulation pin inserted into it intra-operatively. The actual pose of the bone fragment can be updated in real time using an optical tracker, enabling the image guidance. Results Experiments on phantom and cadavers demonstrated the accuracy and reliability of the registration framework, showing a reduction accuracy (sTRE) of about 0.88 ±0.2mm (phantom) and 1.15±0.8mm (cadavers). Four distal femur fractures were successfully reduced in cadaveric specimens using the improved navigation system and the RAFS system following the new clinical workflow (reduction error 1.2±0.3mm, 2±1∘). Conclusion Experiments showed the feasibility of the image registration framework. It was successfully integrated into the navigation system, allowing the use of the RAFS system in a realistic surgical application

    Tritium retention in W plasma-facing materials : Impact of the material structure and helium irradiation

    Get PDF
    This article has an erratum: DOI 10.1016/j.nme.2020.100729Plasma-facing materials for next generation fusion devices, like ITER and DEMO, will be submitted to intense fluxes of light elements, notably He and H isotopes (HI). Our study focuses on tritium (T) retention on a wide range of W samples: first, different types of W materials were investigated to distinguish the impact of the pristine original structure on the retention, from W-coated samples to ITER-grade pure W samples submitted to various annealing and manufacturing procedures, along with monocrystalline W for reference. Then, He and He-D irradiated W samples were studied to investigate the impact on He-damages such as nano-bubbles (exposures in LHD or PSI-2) on T retention. We exposed all the samples to tritium gas-loading using a gentle technique preventing any introduction of new damage in the material. Tritium desorption is measured by Liquid Scintillation counting (LSC) at ambient and high temperatures (800 degrees C). The remaining T inventory is then measured by sample full dissolution and LSC. Results on T inventory on He exposed samples highlighted that in all cases, tritium desorption as a gas (HT) increases significantly due to the formation of He damages. Up to 1.8 times more T can be trapped in the material through a competition of various mechanisms, but the major part of the inventory desorbs at room temperature, and so will most likely not take part to the long-term trapped inventory for safety and operational perspectives. Unfortunately, investigation of "as received" industrial W (used for the making of plasma-facing materials) highlighted a strong impact of the pre existing defects on T retention: up to 2.5 times more T is trapped in "as received W" compared to annealed and polish W, and desorbs only at 800 degrees C, meaning ideal W material studies may underestimate T inventory for tokamak relevant conditions.Peer reviewe

    Ion beam analysis of fusion plasma-facing materials and components : facilities and research challenges

    Get PDF
    Following the IAEA Technical Meeting on ‘Advanced Methodologies for the Analysis of Materials in Energy Applications Using Ion Beam Accelerators’, this paper reviews the current status of ion beam analysis (IBA) techniques and some aspects of ion-induced radiation damage in materials for the field of materials relevant to fusion. Available facilities, apparatus development, future research options and challenges are presented and discussed. The analysis of beryllium and radioactivity-containing samples from future experiments in JET or ITER represents not only an analytical but also a technical challenge. A comprehensive list of the facilities, their current status, and analytical capabilities comes alongside detailed descriptions of the labs. A discussion of future issues of sample handling and the current status of facilities at JET complete the technical section. To prepare the international IBA community for these challenges, the IAEA technical meeting concludes the necessity for determining new nuclear reaction cross-sections and improving the inter-laboratory comparability by defining international standards and testing these via a round-robin test.Peer reviewe

    What is a smart device? - a conceptualisation within the paradigm of the internet of things

    Get PDF
    The Internet of Things (IoT) is an interconnected network of objects which range from simple sensors to smartphones and tablets; it is a relatively novel paradigm that has been rapidly gaining ground in the scenario of modern wireless telecommunications with an expected growth of 25 to 50 billion of connected devices for 2020 Due to the recent rise of this paradigm, authors across the literature use inconsistent terms to address the devices present in the IoT, such as mobile device, smart device, mobile technologies or mobile smart device. Based on the existing literature, this paper chooses the term smart device as a starting point towards the development of an appropriate definition for the devices present in the IoT. This investigation aims at exploring the concept and main features of smart devices as well as their role in the IoT. This paper follows a systematic approach for reviewing compendium of literature to explore the current research in this field. It has been identified smart devices as the primary objects interconnected in the network of IoT, having an essential role in this paradigm. The developed concept for defining smart device is based on three main features, namely context-awareness, autonomy and device connectivity. Other features such as mobility and userinteraction were highly mentioned in the literature, but were not considered because of the nature of the IoT as a network mainly oriented to device-to-device connectivity whether they are mobile or not and whether they interact with people or not. What emerges from this paper is a concept which can be used to homogenise the terminology used on further research in the Field of digitalisation and smart technologies

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Care of patients with inborn errors of immunity in thirty J Project countries between 2004 and 2021

    Get PDF
    IntroductionThe J Project (JP) physician education and clinical research collaboration program was started in 2004 and includes by now 32 countries mostly in Eastern and Central Europe (ECE). Until the end of 2021, 344 inborn errors of immunity (IEI)-focused meetings were organized by the JP to raise awareness and facilitate the diagnosis and treatment of patients with IEI.ResultsIn this study, meeting profiles and major diagnostic and treatment parameters were studied. JP center leaders reported patients’ data from 30 countries representing a total population of 506 567 565. Two countries reported patients from JP centers (Konya, Turkey and Cairo University, Egypt). Diagnostic criteria were based on the 2020 update of classification by the IUIS Expert Committee on IEI. The number of JP meetings increased from 6 per year in 2004 and 2005 to 44 and 63 in 2020 and 2021, respectively. The cumulative number of meetings per country varied from 1 to 59 in various countries reflecting partly but not entirely the population of the respective countries. Altogether, 24,879 patients were reported giving an average prevalence of 4.9. Most of the patients had predominantly antibody deficiency (46,32%) followed by patients with combined immunodeficiencies (14.3%). The percentages of patients with bone marrow failure and phenocopies of IEI were less than 1 each. The number of patients was remarkably higher that those reported to the ESID Registry in 13 countries. Immunoglobulin (IgG) substitution was provided to 7,572 patients (5,693 intravenously) and 1,480 patients received hematopoietic stem cell therapy (HSCT). Searching for basic diagnostic parameters revealed the availability of immunochemistry and flow cytometry in 27 and 28 countries, respectively, and targeted gene sequencing and new generation sequencing was available in 21 and 18 countries. The number of IEI centers and experts in the field were 260 and 690, respectively. We found high correlation between the number of IEI centers and patients treated with intravenous IgG (IVIG) (correlation coefficient, cc, 0,916) and with those who were treated with HSCT (cc, 0,905). Similar correlation was found when the number of experts was compared with those treated with HSCT. However, the number of patients treated with subcutaneous Ig (SCIG) only slightly correlated with the number of experts (cc, 0,489) and no correlation was found between the number of centers and patients on SCIG (cc, 0,174).Conclusions1) this is the first study describing major diagnostic and treatment parameters of IEI care in countries of the JP; 2) the data suggest that the JP had tremendous impact on the development of IEI care in ECE; 3) our data help to define major future targets of JP activity in various countries; 4) we suggest that the number of IEI centers and IEI experts closely correlate to the most important treatment parameters; 5) we propose that specialist education among medical professionals plays pivotal role in increasing levels of diagnostics and adequate care of this vulnerable and still highly neglected patient population; 6) this study also provides the basis for further analysis of more specific aspects of IEI care including genetic diagnostics, disease specific prevalence, newborn screening and professional collaboration in JP countries
    corecore