174 research outputs found

    Experimental Investigation of Unsteady Thrust Augmentation Using a Speaker-Driven Jet

    Get PDF
    An experimental investigation is described in which a simple speaker-driven jet was used as a pulsed thrust source (driver) for an ejector configuration. The objectives of the investigation were twofold. The first was to expand the experimental body of evidence showing that an unsteady thrust source, combined with a properly sized ejector generally yields higher thrust augmentation values than a similarly sized, steady driver of equivalent thrust. The second objective was to identify characteristics of the unsteady driver that may be useful for sizing ejectors, and for predicting the thrust augmentation levels that may be achieved. The speaker-driven jet provided a convenient source for the investigation because it is entirely unsteady (i.e., it has no mean velocity component) and because relevant parameters such as frequency, time-averaged thrust, and diameter are easily variable. The experimental setup will be described, as will the two main measurements techniques employed. These are thrust and digital particle imaging velocimetry of the driver. It will be shown that thrust augmentation values as high as 1.8 were obtained, that the diameter of the best ejector scaled with the dimensions of the emitted vortex, and that the so-called formation time serves as a useful dimensionless parameter by which to characterize the jet and predict performance

    THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES

    Get PDF
    The 1983 Coalinga earthquake occurred at the eastern boundary of the California Coast Ranges in response to northeast directed thrusting. Such movements over the past 2 Ma have produced Coalinga anticline by folding above the blind eastern tip of the Coalinga thrust zone. The 600-km length of the Coast Ranges boundary shares a common structural setting that involves westward upturn of Cenozoic and Cretaceou strata at the eastern front of the Coast Ranges and a major, southwest facing step in the basement surface beneath the western Great Valley. Like Coalinga anticline, Pliocene and Quaternary folding and faulting along the rest of the boundary also result from northeast-southwest compression acting nearly perpendicular to the strike of the San Andreas fault. We suggest that much of this deformation is related to active thrusts beneath the eastern Coast Ranges. The step in the basement surface beneath the Great Valley seems to have controlled the distribution of this deformation and the shape of the Coast Ranges boundary

    Antiviral responses by swine primary bronchoepithelial cells are limited compared to human bronchoepithelial cells following influenza virus infection

    Get PDF
    Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment

    The risk of progression to type 1 diabetes is highly variable in individuals with multiple autoantibodies following screening

    Get PDF
    Aims/hypothesis: Young children who develop multiple autoantibodies (mAbs) are at very high risk for type 1 diabetes. We assessed whether a population with mAbs detected by screening is also at very high risk, and how risk varies according to age, type of autoantibodies and metabolic status. Methods: Type 1 Diabetes TrialNet Pathway to Prevention participants with mAbs (n = 1815; age, 12.35 ± 9.39 years; range, 1-49 years) were analysed. Type 1 diabetes risk was assessed according to age, autoantibody type/number (insulin autoantibodies [IAA], glutamic acid decarboxylase autoantibodies [GADA], insulinoma-associated antigen-2 autoantibodies [IA-2A] or zinc transporter 8 autoantibodies [ZnT8A]) and Index60 (composite measure of fasting C-peptide, 60 min glucose and 60 min C-peptide). Cox regression and cumulative incidence curves were utilised in this cohort study. Results: Age was inversely related to type 1 diabetes risk in those with mAbs (HR 0.97 [95% CI 0.96, 0.99]). Among participants with 2 autoantibodies, those with GADA had less risk (HR 0.35 [95% CI 0.22, 0.57]) and those with IA-2A had higher risk (HR 2.82 [95% CI 1.76, 4.51]) of type 1 diabetes. Those with IAA and GADA had only a 17% 5 year risk of type 1 diabetes. The risk was significantly lower for those with Index60 <1.0 (HR 0.23 [95% CI 0.19, 0.30]) vs those with Index60 values ≥1.0. Among the 12% (225/1815) ≥12.0 years of age with GADA positivity, IA-2A negativity and Index60 <1.0, the 5 year risk of type 1 diabetes was 8%. Conclusions/interpretation: Type 1 diabetes risk varies substantially according to age, autoantibody type and metabolic status in individuals screened for mAbs. An appreciable proportion of older children and adults with mAbs appear to have a low risk of progressing to type 1 diabetes at 5 years. With this knowledge, clinical trials of type 1 diabetes prevention can better target those most likely to progress

    Dysglycemia and Index60 as Prediagnostic End Points for Type 1 Diabetes Prevention Trials

    Get PDF
    OBJECTIVE: We assessed dysglycemia and a T1D Diagnostic Index60 (Index60) ≥1.00 (on the basis of fasting C-peptide, 60-min glucose, and 60-min C-peptide levels) as prediagnostic end points for type 1 diabetes among Type 1 Diabetes TrialNet Pathway to Prevention Study participants. RESEARCH DESIGN AND METHODS: Two cohorts were analyzed: 1) baseline normoglycemic oral glucose tolerance tests (OGTTs) with an incident dysglycemic OGTT and 2) baseline Index60 <1.00 OGTTs with an incident Index60 ≥1.00 OGTT. Incident dysglycemic OGTTs were divided into those with (DYS/IND+) and without (DYS/IND-) concomitant Index60 ≥1.00. Incident Index60 ≥1.00 OGTTs were divided into those with (IND/DYS+) and without (IND/DYS-) concomitant dysglycemia. RESULTS: The cumulative incidence for type 1 diabetes was greater after IND/DYS- than after DYS/IND- (P < 0.01). Within the normoglycemic cohort, the cumulative incidence of type 1 diabetes was higher after DYS/IND+ than after DYS/IND- (P < 0.001), whereas within the Index60 <1.00 cohort, the cumulative incidence after IND/DYS+ and after IND/DYS- did not differ significantly. Among nonprogressors, type 1 diabetes risk at the last OGTT was greater for IND/DYS- than for DYS/IND- (P < 0.001). Hazard ratios (HRs) of DYS/IND- with age and 30- to 0-min C-peptide were positive (P < 0.001 for both), whereas HRs of type 1 diabetes with these variables were inverse (P < 0.001 for both). In contrast, HRs of IND/DYS- and type 1 diabetes with age and 30- to 0-min C-peptide were consistent (all inverse [P < 0.01 for all]). CONCLUSIONS: The findings suggest that incident dysglycemia without Index60 ≥1.00 is a suboptimal prediagnostic end point for type 1 diabetes. Measures that include both glucose and C-peptide levels, such as Index60 ≥1.00, appear better suited as prediagnostic end points

    A Universal Next-Generation Sequencing Protocol To Generate Noninfectious Barcoded cDNA Libraries from High-Containment RNA Viruses

    Get PDF
    ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories

    On the application of magnetic methods for the characterisation of space weathering products

    Get PDF
    Space weathering is now commonly accepted to modify the optical and magnetic properties of airless body regoliths throughout the Solar System. Although the precise formation processes are not well understood, the presence of ubiquitous sub-microscopic metallic iron (SMFe) grains in lunar soils and corresponding spectral analyses have explained both the unique optical and magnetic properties of such soils. More recently, a variety of ion irradiation, laser melting and vaporisation and impact experiments have been shown to reproduce these effects in the laboratory. Such experiments are crucial to the study of the formation of SMFe under controlled conditions. To date, more emphasis has been placed on optical analyses of laboratory samples, as these address directly the mineralogical interpretation of remote sensing data. However, the magnetic analyses performed on the Apollo and Luna samples have provided useful qualitative and quantitative evaluation of regolith metallic iron content. These techniques are reviewed here, demonstrated on pulsed laser irradiated olivine powder, and their utility for determining the quantity and size distribution of this metallic iron discussed. Ferromagnetic resonance, multi- frequency magnetic susceptibility, vibrating sample magnetometry and thermomagnetic measurements were carried out. Each showed trends expected for the conversion of paramagnetic Fe2+ in olivine to fine-grained Fe0, with some grains in the superparamagnetic size range. Although evidence for super- paramagnetic iron was found, the quantity of sub-microscopic metallic iron produced in these experiments proved insufficient to make conclusive measurements of either the quantity or size distribution of this iron. Improvements to both the experimental and analytical procedures are discussed to better enable such measurements in the future
    corecore