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THE STYLE OF LATE CENOZOIC DEFORMATION AT 
THE EASTERN FRONT OF THE CALIFORNIA COAST 
RANGES 

Carl M. Wentworth 

U.S. Geological Survey, Menlo Park, 
California 

Mark D. Zoback 

Department of Geophysics, Stanford 
University, Stanford, California 

Abstract. The 1983 Coalinga earthquake occurred at the 
eastern boundary x)f the California Coast Ranges in response to 
northeast directed thrusting. Such movements over the past 
2 Ma have produced Coalinga anticline by folding above the 
blind eastern tip of the Coalinga thrust zone. The 600-km 
length of the Coast Ranges boundary shares a common struc- 
tural setting that involves westward upturn of Cenozoic and 
Cretaceous strata at the eastern front of the Coast Ranges and a 
major, southwest facing step in the basement surface beneath 
the western Great Valley. Like Coalinga anticline, Pliocene 
and Quaternary folding and faulting along the rest of the 
boundary also result from northeast-southwest compression 
acting nearly perpendicular to the strike of the San Andreas 
fault. We suggest that much of this deformation is related to 
active thrusts beneath the eastern Coast Ranges. The step in 
the basement surface beneath the Great Valley seems to have 
controlled the distribution of this deformation and the shape of 
the Coast Ranges boundary. 

INTRODUCTION 

The magnitude 6.7 earthquake that occurred beneath 
Coalinga anticline on May 2, 1983, has aroused new interest 
in structure along the east front of the Coast Ranges in central 
California (Figure 1). This feature, here termed the Coast 
Ranges boundary, is a prominent topographic and structural 
boundary 600 km long that separates deformed rocks of the 
Coast Ranges from relatively undeformed rocks to the east be- 
neath the Great Valley. 

The Coalinga earthquake stimulated a variety of geological, 
geophysical, and seismological studies (Stein and King [ 1984], 
various papers cited by Rymer and Ellsworth [ 1985, 1989], 
and Namson and Davis, [ 1988]). Of particular interest is the 
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compressional focal mechanism determined for the Coalinga 
main shock [Eaton et al., 1983; Eaton, 1989], which repre- 
sents thrust or reverse faulting directed perpendicular to the 
Coast Ranges boundary (Figures 1-4). We have examined the 
origin of the earthquake in the context of a broader study of the 
Coast Ranges boundary that is founded on a series of reflection 
profiles across the boundary at different latitudes [Wentworth et 
al., 1984, 1987; Zoback and Wentworth, 1986]. We present 
here a tectonic interpretation of the Coalinga earthquake that is 
founded on seismic reflection profiles in the epicentral region, 
but that integrates much of this other work as well. 

We then examine the broader implications of our Coalinga 
interpretation. Similarities in structural relations and current 
stress orientation between the Coalinga area and the rest of the 
Coast Ranges boundary imply that the entire boundary is un- 
dergoing active thrusting and folding. As discussed by Page 
[1981], Zoback et al. [1987], and Mount and Suppe [1987], 
the orientation of this compression and shortening perpendicu- 
lar to the San Andreas fault is incompatible with deformation 
in a wrench tectonic system [Moody and Hill, 1956; Harding, 
1976]. 

The two seismic reflection profiles used in our in- 
terpretation of deep structure in the Coalinga area cross 
Coalinga anticline obliquely just to the north and south of the 
main shock epicenter (Figure 2). They were collected by 
Western Geophysical Company (6 s, 24 fold, VIBROSEIS) 
and later recorrelated to 12 s and reprocessed for the U.S. Geo- 
logical Survey. The most useful reflection profile (SJ-19), 
which crosses the anticline 7 km southeast of the main shock 

epicenter (Figure 2), contains excellent detail to about 5 s 
(Figure 3). A second profile north of the epicenter (SJ-3), part 
of which is illustrated by Namson and Davis [ 1988, Figure 7], 
contains relatively few reflections below the base of the 
Cenozoic section, but does help corroborate continuity of 
structure beneath the length of the anticline. A 1977 
COCORP line (Consortium for Continental Reflection 
Profiling) that crosses the southern tip of the anticline 
(Figure 2) is similar to profile SJ-19 but lacks its clarity and 
detail beneath the anticline. 
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Fig. 1. Index map of central California showing major strike-slip faults and the Coast Ranges boundary between the 
Coast Ranges and the Great Valley. 

COAST RANGES BOUNDARY 

The Coast Ranges boundary (Figure 1) separates uplifted 
and strongly deformed rocks of the Coast Ranges on the west 
from depressed and relatively undeformed strata beneath the 
Great Valley on the east. These unreformed strata overlie west 
tilted crystalline basement that, in its exposed eastern part, 
consists of plutonic and metamorphic rocks of the western 
Sierra Nevada. The deepest exposed rock in the eastern Coast 
Ranges, in contrast, consists of the accreted Franciscan assem- 
blage. Beneath the western Great Valley, 1-4 km of Upper 
Cretaceous sandstones and shales of the Great Valley sequence 
overlie crystalline basement. At the Coast Ranges boundary, 
these strata mm upward and thicken abruptly westward to the 
typically 8-15 km of Jurassic and Cretaceous section that are 
exposed along the eastern edge of the Coast Ranges. This 

thick section is coeval with the Franciscan assemblage, which 
it stmcturally overlies. 

Wentworth et al. [1984] have used seismic reflection and 
refraction evidence at Coalinga and elsewhere to propose that 
the basement relations concealed beneath the Great Valley se- 
quence along the Coast Ranges boundary involve a tectonic 
wedge of Franciscan rock that has been thrust eastward onto 
the continental margin. Principal emplacement of this 
obducted Franciscan wedge was probably completed by early 
Tertiary time, for the Franciscan assemblage was then unroofed 
and providing sediment to nearby basins [Dickinson, 1966; 
Berkland, 1973; Bartow et al., 1985] and vertical load was be- 
ing applied to the crust west of the San Joaquin Valley 
[Rentschler and Bloch, 1988]. Folding within the Coast 
Ranges and at their eastern margin involves strata as young as 
Pliocene and Quaternary, however, and regional uplift of the 
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Fig. 2. Structural contour map showing Coalinga anticline and nearby folds, lines of reflection profiles, and well 
control along SJ-19 (lettered dots). Modified from Ziglet et al. [1986]. 

present Coast Ranges is judged to be of similar age 
[Christensen, 1965; Page, 1981]. 

COALINGA ANTICLINE AND THRUSTS 

The Coalinga earthquake occurred at the Coast Ranges 
boundary beneath Coalinga anticline, which is a young fold 
that plunges southeastward off the south flank of Joaquin 
Ridge anticline (Figure 2) and involves strata as young as the 
Pleistocene part of the Tulare Formation [Banow, 1989] 
(Figure 3). 

We distinguish between Joaquin Ridge anticline and 
Coalinga anticline (Figure 2) because they are separate folds 

with different histories. Most workers have considered them to 

be continuous [e.g., Arnold and Anderson, 1910; Namson and 
Davis, 1988], although it was recognized 50 years ago that 
Coalinga anticline is a much younger fold [Reed and Hollister, 
1936, p. 67]. Joaquin Ridge anticline strikes west-northwest 
and has more than 4 km of structural relief, part of which pre- 
dates the Miocene and Pliocene Etchegoin Formation [Dibblee, 
1971; Casey and Dickinson, 1976; Harding, 1976; Wentworth 
and Zoback, 1989]. Coalinga anticline, in contrast, strikes 
northwest and has a structural relief of only 1 1/2 km that has 
developed largely in the past 2 Ma (Figure 3, Bartow [1989], 
and Wentworth and Zoback [1989]). 

The northwest termination of Coalinga anticline on the 
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Fig. 3. Structure across Coalinga anticline. (a) Migrated reflection record of part of profile SJ-19. (b) Line 
drawing of Figure 3a. Stratigraphy from Bartow [1988]. Marked horizons: C, stratigraphic equivalent of Friant 
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Other letters explained in text. Wells: A, Standard 302; B, Rheem Standard 28; C, Zwang 2-14; D, Union (R.S. 
Lyttle) USL68; E, Union Helm, Sumpf and Sumpf, Pleasant Valley 8-14. (c) Cross section projected to a north- 
east trending line normal to Coalinga anticline at its intersection with profile SJ-19. Seismic velocities, in kilome- 
ters per second, generalized from Wentworth and Zoback [1988] and Walter [ 1988]. Main shock focal mechanism of 
Eaton et al. [1983] projected and fitted to this cross section. 
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south flank of Joaquin Ridge anticline and other aligned struc- 
tural terminations to the south lead us to identify a diffuse fea- 
ture, the northnortheast trending Pleasant Valley cross struc- 
ture. We infer this feature to be a major tear fault in the sub- 
surface across which the principal Diablo Range uplift steps to 
the fight about 30 km (Figures 1 and 2). A few strike-slip 
events in the Coalinga aftershock sequence reinforce the exis- 
tence of the Pleasant Valley cross structure: these earthquakes 
occurred along the cross structure at depths of 10 or more 
kilometers with their right-lateral focal planes oriented parallel 
to the cross structure [Eaton, 1989]. 

Coalinga anticline is clearly defined in the subsurface by 
numerous oil wells [Zigler et al., 1986] and the seismic 
reflection profiles (Figures 2 and 3). The crest and eastern 
flank of the anticline are separated by a distinct flattening of 
the strata (Figure 3, km 15) that divides the fold into two dis- 
tinct steps (Figures 2 and 3). This fold configuration extends 
to a depth of several kilometers through the Cenozoic section 
and another 3 km of Cretaceous strata that form the upper part 
of the Great Valley sequence (Figure 3). This latter section is 
identified by correlation with wells to the east and outcrop to 
the west. 

The rocks that underlie this upper part of the Great Valley 
sequence beneath the anticline are not penetrated by wells. 
Refraction profiling across the anticline [Walter, 1989] en- 
counters basement rock of high seismic velocity (6.5 km/s) at 
a depth of 15 km west of the anticline (Figure 3c). This 
basement surface shallows to the east and is directly overlain 
by the upper part of the Great Valley sequence east ofkm 35 
on Figure 3c. Beneath the anticline, the rock between the up- 
per part of the Great Valley sequence and the basement surface 
is about 10 km thick and has a seismic velocity of about 
5.8 km/s; farther east, it is thinner and has a velocity of about 
5.1 km/s (Figure 3c). 

Coalinga anticline is rooted within the upper half of the 10- 
kmothick interval of 5.8-km/s rock. The top of this interval 
(horizon X) is folded and faulted as part of the overlying 
Coalinga anticline, but the prominent reflections labeled T (at 
about 5 s, Figures 3a and 3b) do not participate in that folding. 
The slight angular discordance of the reflections labeled Z rela- 
tive to the underlying T reflections suggest that T represents a 
fault zone. Reflections L and N splay upward from the T zone 
toward aligned terminations of reflections under the east limbs 
of the crest and east flank of the fold. 

We interpret these relations together to indicate eastward 
thrusting along the T zone that splayed upward along reverse 
faults and then dispersed by folding to form Coalinga anticline. 
Similar but less distinct relations are present in profile SJ-3, 
which reinforces the conclusion that the faults and the anticline 

are causally related. The thrusts, which we name the Coalinga 
thrust zone, thus involve northeast directed movement perpen- 
dicular to the fold axis. 

This interpretation contrasts with the fault-bend-fold inter- 
pretation of Namson and Davis [1988], which was founded on 
surface geology and drill holes across Joaquin Ridge anticline 
(Figure 2) and interpretation of reflection profile SJ-3 [Namson 
and Davis, 1988, Figure 7]. Our own study of profile SJ-3 
finds relations in the critical area beneath the east limb of 

Coalinga anticline to be ambiguous. The clarity of relations 
on profile SJ-19 (Figure 3) is more than sufficient, however, 
to deny the possibility of downward termination of strata in 
the east limb of Coalinga anticline against the footwall flat 
portion of a ramp flat thrust [Namson and Davis, 1988, Fig- 
ures 6 and 7]. Our interpretation of profile SJ- 19 also differs 
from that of Fielding et al. [1984], which was founded on the 
nearby COCORP profile. 

THE 1983 COALINGA EARTHQUAKE 

The main shock of the Coalinga earthquake sequence oc- 
curred at a depth of about 10 km beneath Coalinga anticline 
[Eaton et al., 1983; Eaton, 1989], which places it in the 
Coalinga thrust zone (Figure 3c). One focal plane of the main 
shock mechanism strikes N53øW, essentially parallel to the 
anticlinal axis, and dips 23 ø to the southwest [Eaton, 1989]. 
This focal plane represents northeast directed thrusting that is 
similar to, but slightly steeper than, that of the Coalinga 
thrust zone. Coseismic surface deformation documented by 
Stein [ 1985] involved growth of the crest of the fold. 

We thus conclude that the Coalinga main shock resulted 
from a northeast directed thrust event in the Coalinga thrust 
zone that splayed upward beneath the crest of the fold. The 
hypocenter appears to be located in the curved junction be- 
tween the thrust (T) and reverse splay (Figures 3b and 3c), thus 
accounting for the dip of the thrust focal plane. 

Aftershocks of the Coalinga main shock defined a complex 
pattem beneath Coalinga anticline and adjacent areas [Eaton, 
1989; Eberhart-Phillips and Reasenberg, 1989]. A number of 
aftershocks occurred approximately along the Coalinga thrust 
zone and the updip reverse splay beneath the fold crest that in- 
volved subhorizontal compression similar to that of the main 
shock. Others imply the presence of thrusting farther north- 
west. Although we conclude from the uplift pattern that main 
shock rupture terminated at the Pleasant Valley cross structure, 
numerous thrust aftershocks near the depth of the Coalinga 
thrust zone extended another 10 km to the northwest beneath 

Joaquin Ridge anticline. 
We have tested the ability of the Coalinga thrust and re- 

verse splay to produce the observed surface uplift using dislo- 
cation modeling [Wentworth and Zoback, 1989]. The thrust 
and reverse faults were represented by gently and steeply dip- 
ping planes striking parallel to the anticline and joining near 
the main shock hypocenter. A fault length of 16 km was de- 
fined between the Pleasant Valley cross structure on the 
northwest and the southeast end of uplift and aftershocks. We 
find a reasonable fit to the observed surface uplift for thrust and 
reverse planes with widths (dip extent) of 4 and 7 km and dip 
slips of 2 and 1.2 m, respectively. This dislocation model is 
similar to that of Stein [1985, Figure 3d] and yields an aggre- 
gate seismic moment for the bilateral rupture of about 
8.6 x 102s dyn. cm. This result is in fair agreement with 
those of Hartzell and Heaton [1983] and Kanamori [1983] 
determined from seismic radiation 

REGIONAL SETTING OF COALINGA STRUCTURES 

Coalinga anticline and the underlying Coalinga thrusts oc- 
cur at the Coast Ranges boundary where the top of deep crys- 
talline basement begins to shallow eastward (Figure 3c). The 
basement surface rises at nearly 20 ø from a depth of about 
15 km west of the anticline to about 6 km east of it (km 35, 
Figure 3c), where the surface abruptly flattens to a more 
gradual eastward rise beneath the San Joaquin Valley (Figures 
3c and 4). This step in the basement surface is defined princi- 
pally by the seismic refraction model of Walter [1989], but is 
corroborated by magnetic and gravity interpretation [Griscom 
and Jachens, 1989] and by coincidence of the refraction base- 
ment surface with a strong reflection at 3.8 s (5.6 km) on pro- 
file SJ-19 at km 43 (Figures 2 and 3). 

The identity of the thick interval of rock between crys- 
talline basement and the base of the upper part of the Great 
Valley sequence is difficult to determine. Wells in the San 
Joaquin Valley 20 km east of the profile encounter about 
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1 km of Great Valley sequence that unconformably overlies 
crystalline basement, whereas in the mountains to the west 
about 8 km of Great Valley sequence are exposed that stmc- 
rurally overlie the Franciscan assemblage. 

Rock east of the anticline in the interval between basement 

and the upper part of the Great Valley sequence is probably 
lower Great Valley sequence, as it yields poorly defined, west 

dipping reflections (not illustrated in Figure 3) and has a re- 
fraction velocity (5.0-5.2 km/s) that is only slightly higher 
than the 4.8 km/s observed in Great Valley sequence at shal- 
lower depth elsewhere [Walter and Mooney, 1982]. Below and 
west of the anticline, in contrast, the seismic velocity in this 
interval is higher and has values (5.7-6.1 km/s) that are typical 
of Franciscan rock elsewhere in the Diablo Range [Stewart and 
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Peselnick, 1978; Walter and Mooney, 1982]. It is the pres- 
ence of such a body of relatively high-velocity rock separating 
Great Valley sequence above from an essentially continuous 
basement surface below, both here and elsewhere, that led to 
the proposal of a tectonic wedge of Franciscan assemblage at 
the Coast Ranges boundary [Wentworth et al., 1984]. 

The whole 10-km thickness of 5.8-km/s rock beneath and 
west of Coalinga anticline cannot be a tectonically emplaced 
wedge of Franciscan rock, however, because emplacement of 
such a thickness of rock would have raised the overlying sec- 
tion appreciably more than is now evident (Figure 3c). We 
conclude that the interval is half lower Great Valley sequence 
and half Franciscan assemblage [Wentworth and Zoback, 
1989]. If the upper part of the interval is Great Valley se- 
quence and the lower part Franciscan assemblage, then the 
continuous, layered reflections in the X-T interval (Figure 3) 
are well accounted for, although the seismic velocity is 
anomalously high for Great Valley sequence at that depth. In 
this case the Coalinga thrusts follow the Coast Range thrust at 
the roof of the Franciscan wedge (Figure 3c). Conversely, if 
the lower half of this interval is Great Valley sequence and the 
upper half Franciscan assemblage, the deep burial of the Great 
Valley sequence helps account for the high seismic velocity. 
In this case the Coalinga thrusts represent a continuation of 
eastward thrust movement along the base of the Franciscan 
wedge. Resolution of this uncertainty is not essential to the 
present discussion. 

Although uplift of the Coast Ranges west of Pleasant Val- 
ley begaa by early Tertiary time, as indicated by angular un- 
conformity at the base of the Cenozoic section (km 1 on Fig- 
ure 3b), Coalinga anticline is much younger. Thinning across 
the crest of the fold began only with upper Pliocene strata of 
the San Joaquin Formation [Bartow, 1989] and is prominent in 
S J-19 only above the top of that formation, which is about 
2 Ma old [Sarna-Wojcicki et al., 1985]. Continued folding 
involved horizon C, which is the stratigraphic equivalent of 
the 0.6 Ma Friant Pumice Member of the Turlock Lake 

Formation. This equivalence (J. A. Bartow, oral commu- 
nication, 1984) is based on correlation between geophysical 
logs of oil wells and depth to the Corcoran Clay member in 
shallow wells [e.g., Page, 1986]. 

Deformation associated with Coalinga anticline thus began 
in late Pliocene time, when we infer that the Franciscan wedge 
advanced beneath Pleasant Valley and raised the overlying stra- 
ta. Movement then proceeded along the Coalinga thrust zone 
and formed the balance of the fold. The geometry of the fold 
suggests that several kilometers of thrust offset were required 
to form it. Over the 2 million years of fold growth, this rep- 
resents shortening of about 4 km, which is several percent of 
the rate of lateral movement along the San Andreas fault. 

SIMILARITIES ALONG THE COAST RANGES 
BOUNDARY 

The principal elements of the regional setting at Coalinga 
are common to the whole length of the Coast Ranges bound- 
ary. Most evident is the parallelism along the boundary be- 
tween the abrupt westward upturn of Cenozoic and Cretaceous 
strata and the step in the basement surface to the east beneath 
the Great Valley (Figure 4). That basement surface dips 
gently westward beneath the eastern two thirds of the valley (to 
the hachured line on Figure 4) before stepping down more 
steeply toward the leading edge of the Coast Ranges. There, it 
flattens and continues beneath the edge of the Coast Ranges 
(see Figure 3c). A third, less certain, parallel feature is the 
buffed tip of the Franciscan wedge, which is inferred to have 

been thrust eastward across this basement surface 

approximately to the Coast Ranges boundary [wentworth et 
al., 1984]. 

The Coast Ranges boundary is prominently marked by 
westward upturning of strata as young as Pliocene and 
Pleistocene, by uplift of the Coast Ranges to the west, and by 
parallel folding along and east of the boundary (Figure 4). 
The orientation of these folds and the shape of the Coast 
Ranges boundary itself closely fit the shape of the line of 
westward steepening of the basement surface, which typically 
lies 15 to 20 km east of the boundary. 

In the southern Great Valley, an apparent line of slight but 
distinct, westward steepening of the shallow sedimentary sec- 
tion above that line of basement steepening seems to mark 
another feature parallel to the Coast Ranges boundary. Four of 
five points of control nearly coincide in plan view with the 
inferred line of basement steepening (Figure 4). This shallow 
steepening is evident on seismic refection lines at latitudes 
35.8, 36.2, and 37.3 [wentworth et al., 1983, Figure 3, 
km 68; Wentworth and Zoback, 1988, Plate la, km 38; 
Wentworth et al., 1987, Figure 2, km 47] and on detailed cross 
sections at latitudes 36.7 and 37.1 [Lettis, 1982]. These de- 
tailed cross sections show this deformation to have continued 
at least into early Riverbank time (300-450 Ka; Lettis [1982, 
1988]). 

Many of the folds along and east of the Coast Ranges 
boundary are young, particularly southeast of Coalinga along 
the Kettleman Hills anticlinal trend and nearby, but also farther 
north [see Jennings, 1977]. The most prominent young fold 
along the northern part of the boundary is Dunnigan Hills 
anticline (Figures 1 and 4), where upper Quaternary strata are 
involved in the folding [Harwood and Helley, 1987]. In con- 
trast to the Kettleman trend, Sites anticline, which similarly 
occurs at the Coast Range boundary but near its northern end, 
is unconformably overlain by Pliocene Tehama Formation 
(3.4 Ma) and shows no Quaternary folding [Helley and 
Harwood, 1985]. To the east of it, however, folds along the 
Coming anticlinal trend (Figures 1 and 4) do involve upper 
Quaternary strata and are associated with steep faults that show 
reverse offset of the basement surface [Harwood and Helley, 
1987; Harwood, 1984, Figure 5]. Similarly, young folds in 
the southern Great Valley east of the Kettleman trend are 
probably also related to reverse faults in basement [wentworth 
et al., 1983; Wentworth and Zoback, 1989]. 

At the eastern front of the central Diablo Range, the Coast 
Ranges boundary is distinguished by the early Quaternary San 
Joaquin fault (Figure 4), which exhibits down-to-the-east 
offset locally greater than 140-220 m [Herd, 1979; Lettis, 
1982]. Although considered a normal fault by Herd [1979], 
this fault probably also results from compressive deformation 
across the Coast Ranges boundary and is now considered likely 
to be a thrust or reverse fault by Lettis [1988]. 

West of the southern part of the San Joaquin fault, Lettis 
[1982] has mapped numerous down-to-the-west reverse faults 
that document continuing eastward tilting of the Great Valley 
sequence in the eastern Diablo Range during Quaternary time. 

The eastern margin of the uplifted Franciscan core of the 
northern Coast Ranges and central Diablo Range is also paral- 
lel to the Coast Ranges boundary (Figure 4). It lies 15 to 
20 km west of the boundary and typically separates high, 
rugged topography in the Franciscan termne from more 
subdued topography on Great Valley sequence. This contact 
has long been considered the surface trace of the Coast Range 
thrust. In most places, however, it actually consists of steep 
Cenozoic faults (Coast Range fault, Tesla-Ortigalita fault) that 
have undergone dip slip associated with range uplift and, in the 
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Diablo Range, right-lateral strike slip as well [Raymond, 
1973; Page, 1981; Anderson et al., 1982; Jayko and Blake, 
1988, also oral communication, 1988] 

STATE OF STRESS ALONG THE COAST RANGES 
BOUNDARY 

The direction of maximum horizontal compression indicat- 
ed by earthquake focal mechanisms and well bore breakouts 
along the length of the Coast Ranges boundary is consistently 
northeast-southwest (Figure 4). Mount and Suppe [1987] 
show that the mean orientation of fold axes in the Coalinga 
region is essentially perpendicular to the maximum horizontal 
compressive stress. In fact, this relation holds in detail along 
the whole length of the Coast Ranges boundary, both with the 
folds and with the line of basement steepening: where their 
orientation varies locally, so too does the compression direc- 
tion (Figure 4). 

The breakout stress orientations shown in Figure 4 were 
mostly obtained by Mount and Suppe [1987] from wells that 
range in depth from 0.2 to 4.6 km in sedimentary rock. The 
close agreement between these orientations and those deduced 
from the focal mechanisms of earthquakes at depths of about 
3 to 12 km (Figure 4) shows that the sedimentary strata are 
folding in response to the same stress field that affects the 
seismogenic thickness of the crust [Zoback et al., 1987]. 
Thus a consistent relation between deep faulting and shallow 
folding, which we have documented at Coalinga, probably ex- 
ists along much of the Coast Ranges boundary. 

A surprising feature of the observed direction of maximum 
horizontal compression along the Coast Ranges boundary is 
that it is nearly perpendicular to the strike of the San Andreas 
fault, suggesting that the San Andreas is moving under very 
low shear stress [Zoback et al., 1987; Mount and Suppe, 
1987]. This northeast directed compression probably began at 
about 3.6 Ma [Harbert and Cox, 1986], when a slight clock- 
wise change in the direction of Pacific plate motion relative to 
North America introduced a small component of convergence 
across the San Andreas fault [Cox and Engebretson, 1985]. 
Zoback et al. [1987] argue that the high angle of maximum 
horizontal stress across the fault is actually caused by low 
shear strength along the fault. 

CONCLUSIONS 

Modern compression directions determined from earthquakes 
and well bore breakouts in the easternmost Coast Ranges and 
the Great Valley indicate that the entire length of the Coast 
Ranges boundary is undergoing compression and resultant 
shortening that is essentially perpendicular to that boundary. 
Although this compression probably derives from plate inter- 
actions at the San Andreas transform, its orientation nearly 
perpendicular to the transform is not compatible with conven- 
tional wrench tectonics. 

A line of abrupt westward steepening of the basement sur- 
face beneath the Great Valley, inferred largely from geophysi- 
cal data, lies about 20 km east of the Coast Ranges boundary. 
This line of steepening and the Coast Ranges boundary extend 
in closely parallel fashion for almost the whole 600-km length 
of the California Coast Ranges. Near coincidence with the 
apparent line of westward steepening in the shallow 
sedimentary section in the southern Great Valley implies that 
this break in basement slope has exerted control on late 
Quaternary deformation. 

Folds at the Coast Ranges boundary and in the western 
Great Valley are oriented parallel to the local orientations of 

the boundary and the line of basement steepening and perpen- 
dicular to the local compression direction. Along the southern 
part of the boundary, the compression is producing a 100-km- 
long zone of anticlines located at the boundary. We have 
shown that the young folding at Coalinga anticline is the 
shallow expression of deeper thrusting. Structure there, at 
Kettleman South Dome [Wentworth et al., 1983], and at Lost 
Hills [Medwedeff and Suppe, 1986] all suggest that this whole 
anticlinal trend results from blind thrusting beneath the folds. 
Coalinga aftershocks indicate that thrusting extends beneath 
Joaquin Ridge anticline, and local folding at the boundary far- 
ther north may also result from deeper thrusting. Near the 
north end of the boundary, however, the prominent folding at 
Sites anticline seems to predate the current tectonic regime. 

Young folding east of the Coast Ranges boundary is a 
product of the same compression. Where basement is deep 
this folding may also reflect underlying thrusts, but to the east 
where basement is shallower the folding probably overlies re- 
verse faults. 

Faulting, eastward tilting, and associated uplift of the east- 
ern Coast Ranges may also be related to underlying thrusts 
moving under northeast-southwest compression. 

We suggest that much of the young folding and faulting 
along the Coast Ranges boundary is the shallow expression of 
deeper thrusting that is driven by northeast-southwest com- 
pression. The detailed geometric association between this de- 
formation and the line of abrupt westward steepening of base- 
ment implies fundamental control of that deformation by the 
step in the basement surface beneath the western Great Valley. 
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