209 research outputs found

    Exploring neutrophil heterogeneity in health and cancer

    Get PDF
    Interactions between cancer cells and their microenvironment are critical for tumour initiation, growth and metastasis. Consequently, a greater understanding of these interactions may offer novel opportunities for therapy. Neutrophils are innate immune cells that form a component of the tumour microenvironment. Both pro- and anti-tumour effects of neutrophils are reported in the literature, suggesting context-dependent complexity in neutrophil-tumour interactions. This complexity is further deepened by recent reports demonstrating that neutrophil populations are more heterogeneous than previously appreciated, but it is unclear what significance this may have in a cancer context. This thesis therefore aimed to investigate how tumours perturb neutrophil heterogeneity and the potential functional consequences of this perturbation for neutrophiltumour interactions. I first used mass cytometry to perform high-dimensional analysis of mouse neutrophil surface marker expression across tissues and control and tumour-bearing contexts, using the MMTV-PyMT mouse model of breast cancer. This revealed a number of neutrophil populations defined by their differential expression of surface markers, with shifts in the populations observed between control and tumour-bearing mice. In particular, a population of neutrophils defined by low expression of L-Selectin (CD62L- ) expands in the bone marrow, circulation and periphery of tumour-bearing mice. This phenotype was observed in a number of other mouse cancer models. Analysis of nuclear morphology found that CD62Lneutrophils have a more hyper-segmented nucleus than CD62L+ neutrophils, suggesting potential functional differences between these populations. However, a range of functional assays did not identify differences between the two populations. Instead, comparison of the total neutrophil population from control mice and tumour-bearing mice discovered differences in functionality. Most significantly, when comparing neutrophils from control and tumour-bearing mice I found changes in kinase activity, reactive oxygen species and in vitro interactions with cancer cells, indicating broad shifts in neutrophil phenotype during the switch from a healthy state to cancer

    Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders.

    Get PDF
    Blood-based biomarker discovery for psychotic disorders has yet to impact upon routine clinical practice. In physical disorders antibodies have established roles as diagnostic, prognostic and predictive (theranostic) biomarkers, particularly in disorders thought to have a substantial autoimmune or infective aetiology. Two approaches to antibody biomarker identification are distinguished: a top-down approach, in which antibodies to specific antigens are sought based on the known function of the antigen and its putative role in the disorder, and emerging bottom-up or omics approaches that are agnostic as to the significance of any one antigen, using high-throughput arrays to identify distinctive components of the antibody repertoire. Here we review the evidence for antibodies (to self-antigens as well as infectious organism and dietary antigens) as biomarkers of diagnosis, prognosis, and treatment response in psychotic disorders. Neuronal autoantibodies have current, and increasing, clinical utility in the diagnosis of organic or atypical psychosis syndromes. Antibodies to selected infectious agents show some promise in predicting cognitive impairment and possibly other symptom domains (eg, suicidality) within psychotic disorders. Finally, infectious antibodies and neuronal and other autoantibodies have recently emerged as potential biomarkers of response to anti-infective therapies, immunotherapies, or other novel therapeutic strategies in psychotic disorders, and have a clear role in stratifying patients for future clinical trials. As in nonpsychiatric disorders, combining biomarkers and large-scale use of bottom-up approaches to biomarker identification are likely to maximize the eventual clinical utility of antibody biomarkers in psychotic disorders

    Maintaining a sense of direction during long-range communication on DNA

    Get PDF
    Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction–modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such as mismatch repair is also discussed

    DNA cleavage site selection by Type III restriction enzymes provides evidence for head-on protein collisions following 1D bidirectional motion

    Get PDF
    DNA cleavage by the Type III Restriction–Modification enzymes requires communication in 1D between two distant indirectly-repeated recognitions sites, yet results in non-specific dsDNA cleavage close to only one of the two sites. To test a recently proposed ATP-triggered DNA sliding model, we addressed why one site is selected over another during cleavage. We examined the relative cleavage of a pair of identical sites on DNA substrates with different distances to a free or protein blocked end, and on a DNA substrate using different relative concentrations of protein. Under these conditions a bias can be induced in the cleavage of one site over the other. Monte-Carlo simulations based on the sliding model reproduce the experimentally observed behaviour. This suggests that cleavage site selection simply reflects the dynamics of the preceding stochastic enzyme events that are consistent with bidirectional motion in 1D and DNA cleavage following head-on protein collision

    T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    Get PDF
    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer

    Optimized peptide-MHC multimer protocols for detection and isolation of autoimmune T-cells

    Get PDF
    <p>Peptide–MHC (pMHC) multimers have become the “gold standard” for the detection and isolation of antigen-specific T-cells but recent evidence shows that normal use of these reagents can miss fully functional T-cells that bear T-cell receptors (TCRs) with low affinity for cognate antigen. This issue is particularly pronounced for anticancer and autoimmune T-cells as self-reactive T-cell populations are enriched for low-affinity TCRs due to the removal of cells with higher affinity receptors by immune tolerance mechanisms. Here, we stained a wide variety of self-reactive human T-cells using regular pMHC staining and an optimized technique that included: (i) protein kinase inhibitor (PKI), to prevent TCR triggering and internalization, and (ii) anti-fluorochrome antibody, to reduce reagent dissociation during washing steps. Lymphocytes derived from the peripheral blood of type 1 diabetes patients were stained with pMHC multimers made with epitopes from preproinsulin (PPI), insulin-β chain, glutamic acid decarboxylase 65 (GAD65), or glucose-6-phospate catalytic subunit-related protein (IGRP) presented by disease-risk allelles HLA A*02:01 or HLA*24:02. Samples from ankylosing spondylitis patients were stained with a multimerized epitope from vasoactive intestinal polypeptide receptor 1 (VIPR1) presented by HLA B*27:05. Optimized procedures stained an average of 40.5-fold (p = 0.01, range between 1.4 and 198) more cells than could be detected without the inclusion of PKI and cross-linking anti-fluorochrome antibody. Higher order pMHC dextramers recovered more cells than pMHC tetramers in parallel assays, and standard staining protocols with pMHC tetramers routinely recovered less cells than functional assays. HLA A*02:01-restricted PPI-specific and HLA B*27:05-restricted VIPR1-specific T-cell clones generated using the optimized procedure could not be stained by standard pMHC tetramer staining. However, these clones responded well to exogenously supplied peptide and endogenously processed and presented epitopes. We also showed that anti-fluorochrome antibody-conjugated magnetic beads enhanced staining of self-reactive T-cells that could not be stained using standard protocols, thus enabling rapid ex vivo isolation of autoimmune T-cells. We, therefore, conclude that regular pMHC tetramer staining is generally unsuitable for recovering self-reactive T-cells from clinical samples and recommend the use of the optimized protocols described herein.</p

    The single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops

    Get PDF
    To cleave DNA, the single polypeptide restriction–modification enzyme LlaGI must communicate between a pair of indirectly repeated recognition sites. We demonstrate that this communication occurs by a 1-dimensional route, namely unidirectional dsDNA loop translocation rightward of the specific recognition sequence 5′-CTnGAyG-3′ as written (where n is either A, G, C or T and y is either C or T). Motion across thousands of base pairs is catalysed by the helicase domain and requires the hydrolysis of 1.5-2 ATP per base pair. DNA loop extrusion is accompanied by changes in DNA twist consistent with the motor following the helical pitch of the polynucleotide track. LlaGI is therefore an example of a polypeptide that is a completely self-contained, multi-functional molecular machine
    corecore