467 research outputs found

    Balancing Design Options with Sherpa

    Get PDF
    Application specific processors offer the potential of rapidly designed logic specifically constructed to meet the performance and area demands of the task at hand. Recently, there have been several major projects that attempt to automate the process of transforming a predetermined processor configuration into a low level description for fabrication. These projects either leave the specification of the processor to the designer, which can be a significant engineering burden, or handle it in a fully automated fashion, which completely removes the designer from the loop. In this paper we introduce a technique for guiding the design and optimization of application specific processors. The goal of the Sherpa design framework is to automate certain design tasks and provide early feedback to help the designer navigate their way through the architecture design space. Our approach is to decompose the overall problem of choosing an optimal architecture into a set of sub-problems that are, to the first order, independent. For each subproblem, we create a model that relates performance to area. From this, we build a constraint system that can be solved using integer-linear programming techniques, and arrive at an ideal parameter selection for all architectural components. Our approach only takes a few minutes to explore the design space allowing the designer or compiler to see the potential benefits of optimizations rapidly. We show that the expected performance using our model correlates strongly to detailed pipeline simulations, and present results showing design tradeoffs for several different benchmarks

    Measurement of prompt open-charm production cross sections in proton-proton collisions at root s=13 TeV

    Get PDF
    The production cross sections for prompt open-charm mesons in proton-proton collisions at a center-of-mass energy of 13TeV are reported. The measurement is performed using a data sample collected by the CMS experiment corresponding to an integrated luminosity of 29 nb(-1). The differential production cross sections of the D*(+/-), D-+/-, and D-0 ((D) over bar (0)) mesons are presented in ranges of transverse momentum and pseudorapidity 4 < p(T) < 100 GeV and vertical bar eta vertical bar < 2.1, respectively. The results are compared to several theoretical calculations and to previous measurements.Peer reviewe

    Measurement of B-c(2S)(+) and B-c*(2S)(+) cross section ratios in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Development and validation of HERWIG 7 tunes from CMS underlying-event measurements

    Get PDF
    This paper presents new sets of parameters (“tunes”) for the underlying-event model of the HERWIG7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in HERWIG7, and are obtained from a fit to minimum-bias data collected by the CMS experiment at s=0.9, 7, and 13Te. The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the dat
    • 

    corecore