760 research outputs found

    Seasonal and interannual variability of solar radiation at Spirit, Opportunity and Curiosity landing sites

    Get PDF
    In this article we characterize the radiative environment at the landing sites of NASA's Mars Exploration Rover (MER) and Mars Science Laboratory (MSL) missions. We use opacity values obtained at the surface from direct imaging of the Sun and our radiative transfer model COMIMART to analyze the seasonal and interannual variability of the daily irradiation at the MER and MSL landing sites. In addition, we analyze the behavior of the direct and diffuse components of the solar radiation at these landing sites

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Ala-insertion scanning mutagenesis of the glycophorin A transmembrane helix

    Get PDF
    Alanine insertions into the glycophorinA transmembrane helix are found to disrupthelix-helix dimerization in a way thatis fully consistentwith earlier saturation mutagenesis datas,uggesting that Ala-insertion scanning can be used to rapidly map the approximate locatiofn structurally and/or functionally importantsegments in trans-membrane helice

    Live cell imaging with protein domains capable of recognizing phosphatidylinositol 4,5-bisphosphate; a comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)<it>P</it><sub>2</sub>] is a critically important regulatory phospholipid found in the plasma membrane of all eukaryotic cells. In addition to being a precursor of important second messengers, PtdIns(4,5)<it>P</it><sub>2 </sub>also regulates ion channels and transporters and serves the endocytic machinery by recruiting clathrin adaptor proteins. Visualization of the localization and dynamic changes in PtdIns(4,5)<it>P</it><sub>2 </sub>levels in living cells is critical to understanding the biology of PtdIns(4,5)<it>P</it><sub>2</sub>. This has been mostly achieved with the use of the pleckstrin homology (PH) domain of PLCδ1 fused to GFP. Here we report on a comparative analysis of several recently-described yeast PH domains as well as the mammalian Tubby domain to evaluate their usefulness as PtdIns(4,5)<it>P</it><sub>2 </sub>imaging tools.</p> <p>Results</p> <p>All of the yeast PH domains that have been previously shown to bind PtdIns(4,5)<it>P</it><sub>2 </sub>showed plasma membrane localization but only a subset responded to manipulations of plasma membrane PtdIns(4,5)<it>P</it><sub>2</sub>. None of these domains showed any advantage over the PLCδ1PH-GFP reporter and were compromised either in their expression levels, nuclear localization or by causing peculiar membrane structures. In contrast, the Tubby domain showed high membrane localization consistent with PtdIns(4,5)<it>P</it><sub>2 </sub>binding and displayed no affinity for the soluble headgroup, Ins(1,4,5)P<sub>3</sub>. Detailed comparison of the Tubby and PLCδ1PH domains showed that the Tubby domain has a higher affinity for membrane PtdIns(4,5)<it>P</it><sub>2 </sub>and therefore displays a lower sensitivity to report on changes of this lipid during phospholipase C activation.</p> <p>Conclusion</p> <p>These results showed that both the PLCδ1PH-GFP and the GFP-Tubby domain are useful reporters of PtdIns(4,5)<it>P</it><sub>2 </sub>changes in the plasma membrane, with distinct advantages and disadvantages. While the PLCδ1PH-GFP is a more sensitive reporter, its Ins(1,4,5)P<sub>3 </sub>binding may compromise its accuracy to measure PtdIns(4,5)<it>P</it><sub>2</sub>changes. The Tubby domain is more accurate to report on PtdIns(4,5)<it>P</it><sub>2 </sub>but its higher affinity and lower sensitivity may limit its utility when phospholipase C activation is only moderate. These studies also demonstrated that similar changes in PtdIns(4,5)<it>P</it><sub>2 </sub>levels in the plasma membrane can differentially regulate multiple effectors if they display different affinities to PtdIns(4,5)<it>P</it><sub>2</sub>.</p

    Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes

    Get PDF
    Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients. This article is protected by copyright. All rights reserved
    corecore