94 research outputs found

    Prevalence of Local Immune Response against Oral Infection in a Drosophila/Pseudomonas Infection Model

    Get PDF
    Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens

    Epidermal Keratinocyte Self-Renewal Is Dependent upon Dermal Integrity

    Get PDF
    The epidermis is a major site of self-renewal in which there is constant replacement by cell division in the basal layers of cells lost by desquamation in the superficial layers. such a tissue is therefore likely to contain stem cells and in this study we have examined the role of the dermis in the maintenance of epidermal self-renewal. We have developed a mouse model to address the question of whether the maintenance of epidermal self-renewal is dependent, as in the hemopoietic system, upon a heterologous cell type. Intact epidermis separated from disaggregated epidermal cells, can reconstitute a stratified squamous epithelium when grafted onto the lumbo-dermal fascia of the mouse or onto an experimentally induced granulation tissue bed. However, we have shown that, after grafting the clonogenic capacity of the keratinocytes declines sharply and the colonies that are produced are incapable of self-renewal in vitro. Although initially hyperplastic, these epidermal grafts assume an atrophic appearance after 40–70 d this may be related to the loss of self-renewal observed in vitro. With both experimental murine grafts and clinical grafts the failure of keratinocytes to self-renew can be alleviated, partially, by the presence of the dermis in full-thickness or split-thickness grafts, which implies that the dermis has a functional role in epidermal role in epidermal stem cell maintenance. The relevance of these observations to the clinical experience with cultured autologous keratinocyte sheets as would dressings to patients is discussed

    Experimental Treatments for Spinal Cord Injury: What you Should Know

    Full text link
    Experiencing a spinal cord injury (SCI) is extremely distressing, both physically and psychologically, and throws people into a complex, unfamiliar world of medical procedures, terminology, and decision making. You may have already had surgery to stabilize the spinal column and reduce the possibility of further damage. You are understandably distressed about the functions you may have lost below the level of spinal injury. You wish to recover any lost abilities as soon as possible. You, your family, or friends may have searched the Internet for treatments and cures

    Thiourea and Guanidine Compounds and their Iridium Complexes in Drug-Resistant Cancer Cell Lines: Structure-Activity Relationships and Direct Luminescent Imaging

    Get PDF
    Thiourea and guanidine units are found in nature, medicine, and materials. Their continued exploration in applications as diverse as cancer therapy, sensors, and electronics means that their toxicity is an important consideration. We have systematically synthesised a set of thiourea compounds and their guanidine analogues, and elucidated structure-activity relationships in terms of cellular toxicity in three ovarian cancer cell lines and their cisplatin-resistant sub-lines. We have been able to use the intrinsic luminescence of iridium complexes to visualise the effect of both structure alteration and cellular resistance mechanisms. These findings provide starting points for the development of new drugs and consideration of safety issues for novel thiourea- and guanidine-based materials

    Glycan shifting on hepatitis C virus (HCV) E2 glycoprotein is a mechanism for escape from broadly neutralizing antibodies

    Get PDF
    Hepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood. Here, we have generated potent HCV neutralizing antibodies hu5B3.v3 and MRCT10.v362 that, similar to the previously described AP33 and HCV1, bind to a highly conserved linear epitope on E2. We utilize a combination of in vitro resistance selections using the cell culture infectious HCV and structural analyses to identify mechanisms of HCV resistance to hu5B3.v3 and MRCT10.v362. Ultra deep sequencing from in vitro HCV resistance selection studies identified resistance mutations at asparagine N417 (N417S, N417T and N417G) as early as 5 days post treatment. Comparison of the glycosylation status of soluble versions of the E2 glycoprotein containing the respective resistance mutations revealed a glycosylation shift from N417 to N415 in the N417S and N417T E2 proteins. The N417G E2 variant was glycosylated neither at residue 415 nor at residue 417 and remained sensitive to MRCT10.v362. Structural analyses of the E2 epitope bound to hu5B3.v3 Fab and MRCT10.v362 Fab using X-ray crystallography confirmed that residue N415 is buried within the antibody–peptide interface. Thus, in addition to previously described mutations at N415 that abrogate the β-hairpin structure of this E2 linear epitope, we identify a second escape mechanism, termed glycan shifting, that decreases the efficacy of broadly neutralizing HCV antibodies

    Identification of a lead like inhibitor of the hepatitis C virus non-structural NS2 autoprotease

    Get PDF
    Hepatitis C virus (HCV) non-structural protein 2 (NS2) encodes a autoprotease activity that is essential for virus replication and thus represents an attractive anti-viral target. Recently, we demonstrated that a series of epoxide-based compounds, previously identified as potent inhibitors of the clotting factor, FXIII, also inhibited NS2-mediated proteolysis in vitro and possessed anti-viral activity in cell culture models. This suggested that a selective small molecule inhibitor of the NS2 autoprotease represents a viable prospect, therefore in this independent study we applied a structure-guided virtual high-throughput screening approach to identify a lead-like small molecule inhibitor of the NS2 autoprotease. This screen identified a candidate lead-like small molecule that was able to inhibit both NS2-mediated proteolysis in vitro and NS2-dependent genome replication in a cell-based assay. Structure-activity relationship analysis shed light on the nature of the active pharmacophore in this compound and may inform further development into a more potent inhibitor of NS2 mediated proteolysis

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Single Collateral Reconstructions Reveal Distinct Phases of Corticospinal Remodeling after Spinal Cord Injury

    Get PDF
    Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood
    corecore