134 research outputs found

    Measurement Analysis and Quantum Gravity

    Full text link
    We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system that consists of a gravitational wave interacting with a mass cube. We also review the arguments of Eppley and Hannah and of DeWitt, and investigate a second model in which a gravitational wave interacts with a quantized scalar field. We argue that one cannot conclude from the existing gedanken experiments that gravity has to be quantized. Despite the many physical arguments which speak in favor of a quantum theory of gravity, it appears that the justification for such a theory must be based on empirical tests and does not follow from logical arguments alone.Comment: 31 pages, many conceptual clarifications included, new appendix added, to appear in Phys. Rev.

    Revisiting Event Horizon Finders

    Full text link
    Event horizons are the defining physical features of black hole spacetimes, and are of considerable interest in studying black hole dynamics. Here, we reconsider three techniques to localise event horizons in numerical spacetimes: integrating geodesics, integrating a surface, and integrating a level-set of surfaces over a volume. We implement the first two techniques and find that straightforward integration of geodesics backward in time to be most robust. We find that the exponential rate of approach of a null surface towards the event horizon of a spinning black hole equals the surface gravity of the black hole. In head-on mergers we are able to track quasi-normal ringing of the merged black hole through seven oscillations, covering a dynamic range of about 10^5. Both at late times (when the final black hole has settled down) and at early times (before the merger), the apparent horizon is found to be an excellent approximation of the event horizon. In the head-on binary black hole merger, only {\em some} of the future null generators of the horizon are found to start from past null infinity; the others approach the event horizons of the individual black holes at times far before merger.Comment: 30 pages, 15 figures, revision

    CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells

    Get PDF
    Sickle Cell Disease and beta-thalassemia, which are caused by defective or deficient adult beta-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal beta-like globin, also known gamma-globin, can ameliorate both disorders by serving in place of the adult beta-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential gamma-globin silencer region upstream of the delta-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated gamma-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases gamma-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of gamma-globin. These data suggest that the 1.7 kb region is not an autonomous gamma-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of beta-hemoglobinopathies.Peer reviewe

    Information Requirements under the Essential-Use Concept: PFAS Case Studies

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available (“essential-use concept”). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives. To illustrate the information requirements under the essential-use concept, we investigate seven different PFAS uses, three in consumer products and four industrial applications. We investigate how much information is available on the types and functions of PFAS in these uses, how much information is available on alternatives, their performance and hazardous properties and, finally, whether this information is sufficient as a basis for deciding on the essentiality of a PFAS use. The results show (i) the uses of PFAS are highly diverse and information on alternatives is often limited or lacking; (ii) PFAS in consumer products often are relatively easy to replace; (iii) PFAS uses in industrial processes can be highly complex and a thorough evaluation of the technical function of each PFAS and of the suitability of alternatives is needed; (iv) more coordination among PFAS manufacturers, manufacturers of alternatives to PFAS, users of these materials, government authorities, and other stakeholders is needed to make the process of phasing out PFAS more transparent and coherent

    NASA Rocket Propulsion Test Replacement Effort for Oxygen System Cleaner - Hydrochlorofluorocarbon (HCFC) 225

    Get PDF
    Gaseous and liquid oxygen are extremely reactive materials used in bipropellant propulsion systems. Both flight and ground oxygen systems require a high level of cleanliness to support engine performance, testing, and prevent mishaps. Solvents used to clean and verify the cleanliness of oxygen systems and supporting test hardware must be compatible with the system's materials of construction and effective at removing or reducing expected contaminants to an acceptable level. This paper will define the philosophy and test approach used for evaluating replacement solvents for the current Marshall Space Flight Center/Stennis Space Center baseline HCFC225 material that will no longer be available for purchase after 2014. MSFC/SSC applications in cleaning / sampling oxygen propulsion components, support equipment, and test system were reviewed then candidate replacement cleaners and test methods selected. All of these factors as well as testing results will be discussed

    Impact of the development of an endoscopic eradication program for Barrett's esophagus with high grade dysplasia or early adenocarcinoma on the frequency of surgery

    Get PDF
    Background and aims  The impact of the advent of an institutional endoscopic eradication therapy (EET) program on surgical practice for Barrett's esophagus (BE)-associated high grade dysplasia (HGD) or suspected T1a esophageal adenocarcinoma (EAC) is unknown. The aims of this study are to evaluate the different endoscopic modalities used during development of our EET program and factors associated with the use of EET or surgery for these patients after its development. Methods  Patients who underwent primary endoscopic or surgical treatment for BE-HGD or early EAC at our hospital between January 1992 and December 2014 were retrospectively identified. They were categorized by their initial modality of treatment during the first year, and the impact over time for choice of therapy was assessed by multivariable logistic regression. Results  We identified 386 patients and 80 patients who underwent EET and surgery, respectively. EET included single modality therapy in 254 (66 %) patients and multimodal therapy in 132 (34 %) patients. Multivariable logistic regression showed that, for each subsequent study year, EET was more likely to be performed in patients who were older ( P  = 0.0009), with shorter BE lengths ( P  < 0.0001), and with a pretreatment diagnosis of HGD ( P  = 0.0054) compared to surgical patients. The diagnosis of EAC did not increase the utilization of EET compared to surgery as time progressed ( P  = 0.8165). Conclusion  The introduction of an EET program at our hospital increased the odds of utilizing EET versus surgery over time for initial treatment of patients who were older, had shorter BE lengths or the diagnosis of BE-HGD, but not in patients with EAC

    Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?

    Get PDF
    Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances (PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental and human health impacts of fluoropolymers throughout their life cycle(s). Production of some fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as polymer processing aids. There are serious concerns regarding the toxicity and adverse effects of fluorinated processing aids on humans and the environment. A variety of other PFAS, including monomers and oligomers, are emitted during the production, processing, use, and end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal of fluoropolymers and their associated products and articles at the end of their life cycle. While recycling and reuse of fluoropolymers is performed on some industrial waste, there are only limited options for their recycling from consumer articles. The evidence reviewed in this analysis does not find a scientific rationale for concluding that fluoropolymers are of low concern for environmental and human health. Given fluoropolymers’ extreme persistence; emissions associated with their production, use, and disposal; and a high likelihood for human exposure to PFAS, their production and uses should be curtailed except in cases of essential uses

    Spatial Degrees of Freedom in Everett Quantum Mechanics

    Full text link
    Stapp claims that, when spatial degrees of freedom are taken into account, Everett quantum mechanics is ambiguous due to a "core basis problem." To examine an aspect of this claim I generalize the ideal measurement model to include translational degrees of freedom for both the measured system and the measuring apparatus. Analysis of this generalized model using the Everett interpretation in the Heisenberg picture shows that it makes unambiguous predictions for the possible results of measurements and their respective probabilities. The presence of translational degrees of freedom for the measuring apparatus affects the probabilities of measurement outcomes in the same way that a mixed state for the measured system would. Examination of a measurement scenario involving several observers illustrates the consistency of the model with perceived spatial localization of the measuring apparatus.Comment: 34 pp., no figs. Introduction, discussion revised. Material tangential to main point remove
    • …
    corecore