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Abstract  23 

Fluoropolymers are a group of polymers within the class of per- and polyfluoroalkyl substances 24 

(PFAS). The objective of this analysis is to evaluate the evidence regarding the environmental 25 

and human health impacts of fluoropolymers throughout their life cycle(s). Production of some 26 

fluoropolymers is intimately linked to the use and emissions of legacy and novel PFAS as 27 

polymer processing aids. There are serious concerns regarding the toxicity and adverse effects 28 

of fluorinated processing aids on humans and the environment. A variety of other PFAS, 29 

including monomers and oligomers, are emitted during the production, processing, use and 30 

end-of-life treatment of fluoropolymers. There are further concerns regarding the safe disposal 31 

of fluoropolymers and their associated products and articles at the end of their life cycle. While 32 

recycling and reuse of fluoropolymers is performed on some industrial waste, there are only 33 

limited options for their recycling from consumer articles. The evidence reviewed in this 34 

analysis does not find a scientific rationale for concluding that fluoropolymers are of low 35 

concern for environmental and human health. Given fluoropolymers’ extreme persistence, 36 

emissions associated with their production, use, and disposal, and high likelihood for human 37 

exposure to PFAS, their production and uses should be curtailed except in cases of essential 38 

use. 39 

 40 

41 
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1. Introduction 42 

The class of per- and polyfluoroalkyl substances (PFAS) consists of polymers and non-polymers.1 43 

Most regulatory and academic attention so far has focused on the non-polymeric PFAS, either 44 

perfluorinated or polyfluorinated alkyl substances. Within the groups of polymeric PFAS, there 45 

are fluoropolymers, side-chain fluorinated polymers, and poly- or perfluoropolyethers.  46 

 47 

As defined by Buck et al. (2011), ‘‘fluoropolymers’’ represent a distinct subset of fluorinated 48 

polymers, based on a carbon-only polymer backbone with F atoms directly attached to it, e.g., 49 

polytetrafluoroethylene (PTFE); though some fluoropolymers also have Cl or O directly attached 50 

to the backbone.1 In this analysis, we focus on fluoropolymers, but do not assess concerns 51 

about other fluorinated polymers, namely side-chain fluorinated polymers, and poly- or 52 

perfluoropolyethers. Previous studies have already documented that side-chain fluorinated 53 

polymers can decompose and release non-polymeric PFAS to the environment2; otherwise they 54 

present similar challenges as discussed for fluoropolymers below.   55 

 56 

The group of fluoropolymers is dominated by PTFE; combined with fluorinated ethylene 57 

propylene (FEP), perfluoroalkoxy alkanes (PFA), ethylene tetrafluoroethylene (ETFE) and other 58 

tetrafluoroethylene-copolymers; they account for around 75% of the fluoropolymer market.3   59 

Other important fluoropolymers include polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF) 60 

and fluoroelastomers. One additional fluoropolymer that is discussed in this policy analysis is 61 

the functionalized fluoropolymer Nafion® (produced by Chemours), which is a 62 

tetrafluoroethylene-based fluoropolymer-copolymer incorporating perfluorovinyl ether groups 63 
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terminated with sulfonate groups. A review by Gardiner (2015) includes a more complete 64 

overview of the different types of fluoropolymers.4 Industry produced 320 300 tonnes of 65 

fluoropolymers in 20185, and production is steadily increasing.4 By 2018 the global 66 

fluoropolymer industry was expected to be at $10 billion per annum.4 67 

 68 

Here we evaluate the evidence regarding the environmental and health impacts of 69 

fluoropolymers. Our analysis was prompted by a recent suggestion that fluoropolymers should 70 

be considered as polymers of low concern (PLC).3 According to the Organization for Economic 71 

Cooperation and Development (OECD), “polymers of low concern are those deemed to have 72 

insignificant environmental and human health impacts”.6 The PLC status of a material leads to 73 

exemptions for manufacturers from requirements under the legal chemicals management 74 

frameworks in some jurisdictions.7 In recognition of the potential risks posed by PFAS-related 75 

polymers, the U.S. Environmental Protection Agency has denied PLC exemptions for side-chain 76 

fluorinated polymers, but has not acted on fluoropolymers per se 8. 77 

 78 

We here distinguish between fluoropolymer substances, fluoropolymer products and 79 

fluoropolymers in finished articles. A fluoropolymer substance such as PTFE, FEP, PFA is a 80 

material of known chemical structure. A fluoropolymer product is the actual material produced 81 

and sold by a chemical manufacturer (e.g. Chemours, Solvay, Daikin, Asahi Glass, etc.), comes in 82 

different grades (e.g. Teflon-granulate, Teflon-fine powder, etc.) and may contain impurities 83 

from the production process. These fluoropolymer products are sold to manufacturers of 84 

finished articles (e.g. PTFE tape, waterproof clothing with a PTFE membrane, PTFE-coated 85 
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cookware, etc.) who incorporate the fluoropolymer products in their finished articles. The 86 

distinction is important, as there are many different processes of making fluoropolymer 87 

products. For example, some fluoropolymers do not require PFAS-based processing aids in their 88 

manufacture by suspension polymerization (e.g. granular PTFE), whereas other fluoropolymers 89 

(e.g. fine powder PTFE and PVDF) are manufactured using PFAS-based processing aids during 90 

emulsion polymerization. Fluoropolymers are also diverse in how they are produced (as 91 

granulates, fine powders or aqueous dispersions, through emulsion or suspension 92 

polymerization, with different grades), shipped, and used, which renders generic judgements 93 

on their behavior and characteristics difficult.  94 

 95 

Recently, polymers have been under increased regulatory scrutiny. In 2019, the industry-led 96 

European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) developed a 97 

Conceptual Framework for Polymer Risk Assessment (“CF4Polymers”)9 and, in 2020, the 98 

European Commission contracted a study to propose criteria for the identification of polymers 99 

requiring registration (PRR) under REACH (“the Wood report”).10 CF4Polymers provides guiding 100 

elements to be considered in assessing potential ecological and human health hazards and risks 101 

posed by polymer substances. Unlike the PLC concept, CF4Polymers also considers specific life 102 

cycle stages of polymer products and their associated routes of exposure. CF4Polymers thus 103 

appears sufficiently flexible to allow consideration of potential chemical hazards at each life 104 

stage of a fluoropolymer. However, the authors of the CF4Polymers framework support the PLC 105 

approach as a means of streamlining polymer risk assessments. They specifically support the 106 

findings of Henry et al.3 and state that they are “… unaware of scientific evidence to justify 107 
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generally assigning fluoropolymers the same level of regulatory concern as other PFAS”.9 The 108 

Wood Report notes that side-chain fluorinated polymers “can potentially lead to the formation 109 

of PFAS substances as a result of degradation”, but considers fluoropolymers as PLC, following 110 

the recommendations of Henry et al.3. 111 

 112 

The PLC concept is currently derived from the characteristics of substances and articles but 113 

does not cover problems occurring during production and disposal. Specific fluoropolymer 114 

articles could hence technically meet the definitions of a PLC, but still pose significant concerns 115 

to human health and the environment due to emissions occurring during the life cycle (Figure 116 

1). A well-known case where this occurs is the release of processing aids during the 117 

manufacture of some fluoropolymers (such as PTFE, FEP, PFA, PVDF and some 118 

fluoroelastomers). The pollution caused by emissions of low-molecular-weight PFAS used as 119 

polymer processing aids (i.e., emulsifiers, dispersants and surfactants at large) for the 120 

manufacture of some types of fluoropolymers has received considerable attention.11–13  121 

 122 

In this article, we identify concerns for environmental and human health resulting from 123 

emissions during fluoropolymer production, processing and disposal. We first review the link 124 

between some types of fluoropolymers and PFAS emissions and then turn to more general 125 

concerns associated with (fluoro)polymers. 126 

 127 

2. History of pollution from fluoropolymer production is closely tied to use of PFAS as 128 

polymer processing aids 129 
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Low-molecular-weight PFAS have been used for decades as emulsifiers in the polymerization of 130 

some types of fluoropolymer substances. The resulting long-term exposure of production 131 

workers, the environment, and nearby neighborhoods to high levels of PFAS polymer 132 

processing aids by fluoropolymer manufacturers is now well documented and has driven much 133 

of the initial action on PFAS control.14–21   134 

Historically, the most widely used polymer processing aids were the ammonium salts of 135 

perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA).22,23 The majority of PFOA 136 

and PFNA now in the global environment is a result of the historical use of salts of these 137 

substances as processing aids.22,24 As a consequence of human and environmental health 138 

concerns, under the US EPA 2010/15 Stewardship Program, eight major manufacturers phased 139 

out PFOA/PFNA in their fluoropolymer production.25 Many other manufacturers, though, still 140 

utilize PFOA as a processing aid; PFOA emissions have, for example, now widely polluted the 141 

Asian (especially Chinese) environment.26 These Asian emissions are being discharged into the 142 

atmosphere, rivers and oceans in large quantities and are causing additional global-scale 143 

pollution.26 144 

 145 

3. Substitute fluoropolymer processing aids raise similar concerns 146 

Fluoropolymer producers in industrialized countries have moved to substitute PFOA and PFNA 147 

in polymer production with structurally similar alternatives such as per- and 148 

polyfluoroalkylether carboxylic acids (PFECAs).23,27,28 These PFECAs are not technically classified 149 

as “long-chain” perfluoroalkyl acids (PFAAs) like PFOA and PFNA, but they have similar physical 150 
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and chemical properties (including surfactancy and resistance to degradation) when compared 151 

with the original emulsifiers. 28  152 

One example is the substitution by Chemours of the ammonium salt of PFOA with the 153 

ammonium salt of hexafluoropropylene oxide dimer acid (HFPO-DA, CAS 62037-80-3, or GenX) 154 

(Figure 2a) for PTFE production. When released into the environment, the ammonium salt of 155 

HFPO-DA dissociates to HFPO-DA, which due to similarly high persistence and mobility as its 156 

predecessor PFOA, accumulates in surface water, groundwater, and soil.29,30 HFPO-DA has also 157 

been observed in surface water and drinking water in areas where it is produced, e.g., in North 158 

Carolina31 and the Netherlands.14 HFPO-DA does not bioaccumulate in animals to the same 159 

extent as PFOA32, but has been added to the EU’s Candidate List of Substances of Very High 160 

Concern (SVHC) due to an equivalent level of concern about its very high persistence, mobility 161 

in water, potential for long-range transport, accumulation in plants and observed effects on 162 

human health and the environment.33  163 

In another example, PFNA or, more specifically, its ammonium salt, has been substituted with 164 

salts of another PFECA (CAS 329238-24-6) (Figure 2b).28 The dissociated PFECA has since been 165 

detected in the surface water near a fluoropolymer production facility in Italy34 and in the soil35, 166 

surface and groundwater near a similar PVDF facility in West Deptford, New Jersey (US).36 167 

Another replacement polymer processing aid, cC604, is the ammonium salt of [perfluoro{acetic 168 

acid, 2-[(5-methoxy-1)] (Figure 2c). cC604 has been detected in surface and groundwater in the 169 

Veneto region in Italy.37  Also, ammonium 4,8-dioxa-3H-perfluorononanoate (CAS 958445-44-8, 170 

ADONA) (Figure 2d) is a PFECA processing aid that has been detected in the Rhine River in 171 
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Germany38 and in the blood of individuals living near a fluorochemical production facility in this 172 

area.39   173 

These examples demonstrate the similar concern between legacy and replacement 174 

fluoropolymer processing aids mentioned above in terms of environmental exposure, 175 

bioaccumulation and toxicity (see also section 6 below).40,41 Many more PFAS with similar 176 

structures have been patented for possible use as fluoropolymer processing aids.42–44 Thus, 177 

even if individual processing aids are banned, many other PFAS are available with the same 178 

functionality and similar concerns with respect to persistence and human health effects. 3M 179 

claimed that modern containment technologies recapture approximately 98% of polymer 180 

processing aids such as PFOA and others 45, but losses of 2% are still of concern given their 181 

persistence and related properties. Moreover, independent data are not available to support 182 

this claim. 183 

 184 

4. Monomer, oligomer and synthesis by-product emissions during the production of 185 

fluoropolymers  186 

Fluoropolymers are made of one or several types of monomers. During the synthesis, incomplete 187 

polymerization will result in residual monomers and oligomers, and smaller ‘polymers’ with up 188 

to about 100 monomer units. These and other synthesis by-products are not bound to the 189 

polymers and may be released to air upon heating during manufacturing and processing 190 

(including sintering) and to water through wastewater streams.11,15 For example, a series of 191 

polyfluoroalkyl carboxylic acids were discovered near Decatur, AL (US), each differing by one 1,1-192 
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difluoroethene, CF2CH2, unit, which was used as a building block for production of PVDF at that 193 

site.15 Chemours discovered more than 250 unknown, potentially unique, PFAS in their 194 

wastewater in North Carolina.46  Many ultrashort-chain fluorinated by-products are highly 195 

volatile, and therefore difficult to remove in filters or liquid scrubber baths. An example is 196 

trifluoromethane (CHF3), which has a boiling point of -82.1 °C and belongs to the group of 197 

hydrofluorocarbon (HFC) gases (HFC-23); it has a 100-year global warming potential of 12400 198 

relative to CO2.
47  199 

Little is known about emissions of airborne fluoropolymer particles and oligomers, another 200 

potential source of PFAS in the atmosphere. Henry et al. (2018) specified the particle size in 201 

fluoropolymer powders to vary between 50 and 250 µm, larger than the harmful particle sizes of 202 

PM10 and PM2.5 (10 and 2.5 µm) in terms of harms caused by inhalation.3 However, 203 

fluoropolymer particles vary in size48, and may contain and transport residual 204 

monomers/oligomers long distances from their emission sources.  205 

Various PFAS oligomers were recently detected in the stack emission samples collected from a 206 

fluorochemical production site.49 A wide range of byproducts of the functionalized fluoropolymer 207 

Nafion has been observed in the environment, fish50 and birds51 downstream of this facility. 208 

Moreover, a recent study involving the residents of Wilmington, North Carolina found that the 209 

majority have Nafion Byproduct 2 (99%) and other related PFAS in their blood serum as a result 210 

of consuming contaminated drinking water in this region52. These Nafion-related compounds 211 

could be the result of manufacturing discharges12, or losses resulting from Nafion use over 212 

time.53,54 It is noted that Nafion probably does not meet the PLC criteria because it has a reactive 213 

functional group that can be lost under its harsh use conditions.    214 
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 215 

5. Leaching of low-molecular-weight PFAS from fluoropolymers during processing and 216 

use 217 

Linked to the use of PFAS as production processing aids (see above), there are concerns 218 

regarding the remaining low molecular weight PFAS in fluoropolymers after production. For 219 

example, Henry et al. (2018) argued that fluoropolymers are not toxic, based on a dataset that 220 

was restricted only to a few fluoropolymer substances, typically > 100,000 Da.3 Concentrations 221 

of leachable components reported for those specific fluoropolymer products, particularly a 222 

PTFE fine powder, were labeled “very low” at 1 ppm (i.e., 1 mg/kg)3, though earlier studies 223 

reported concentrations of 1-10 ppm in PTFE fine powder and much higher in PTFE aqueous 224 

dispersion (see SI in Wang et al. (2014)24). Similar levels of PFAAs (0.3-24 ppm) were found in 225 

personal care articles that contained PTFE fine particles (Assuming the cosmetics contained 1% 226 

PTFE, the range of leachables is 0.3 -24 ppm; if the total organofluorine measurements 227 

represented PTFE fine powder, then the range of PFAA-leachables is 15-1,000 ppm).55 Residuals 228 

of 1 ppm may have significant toxicological relevance, given the recently proposed drinking 229 

water guidelines for some PFAS set at 10-100 ng/L in different countries.56,57  The levels of 230 

leachables (e.g. processing aids, synthesis by-products and oligomers) in individual 231 

fluoropolymer substances and products depend on the production process and subsequent 232 

treatment processes; a comprehensive global overview is currently lacking. 233 

Fluoropolymer-coated food contact materials (e.g. metal cookware), if not been properly pre-234 

treated, could lead to the leaching of non-polymeric PFAS residuals into food during the use 235 
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phase.  Processing aids are known to leach from fluoropolymer articles, for example in 236 

chromatographic instrumentation, causing a consistent background signal in analytical 237 

chemistry at the ppt level58,59  238 

Further, Henry et al. (2018) state that the low residual levels found in the finished PTFE 239 

products that they tested are due in large part to “aggressive” steps taken to wash out residuals 240 

and drive off volatiles.3 Such aggressive treatment raises the question of how these residuals 241 

and volatiles are captured and their releases controlled, or if production by-products become 242 

air or water emissions with potential for human exposure. There is evidence that the drying 243 

step (sintering) of fluoropolymers has led to substantial emissions to air of processing aids at 244 

sites of PTFE production (West Virginia (US)29 and the Netherlands) and use sites in the US 245 

(North Bennington, VT; Merrimack, NH, Hoosick Falls, NY).60–62 246 

 247 

6. Toxicity of fluoropolymer processing aids, monomers and oligomers 248 

Legacy processing aids (i.e., PFOA, PFNA) used to manufacture fluoropolymers are linked to a 249 

wide range of health effects in experimental animal models (causative) and humans 250 

(associative), including certain types of cancer, immunotoxicity, reproductive and 251 

developmental toxicity, liver toxicity, and thyroid disease.63 The production of many 252 

fluoropolymers still requires the use of PFAS as surfactants or as monomers, which causes 253 

releases to the environment during manufacture, and thus may pose a risk to human health 254 

and the environment (see also point 9 below). A replacement processing aid, HFPO-DA, shows a 255 

similar toxic potency in rodents as PFOA 41, but its pharmacokinetics in humans is less certain64. 256 
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Few reviews have been published regarding the potential toxicity of other replacement PFECAs, 257 

such as ADONA 65,66 or the PFECA CAS 329238-24-6 67, but these replacement chemicals need to 258 

have similar properties to work, and are as environmentally persistent as the original polymer 259 

processing aids.40  260 

 261 

7. Penetration of cell membranes by macromolecules 262 

While not specific to fluoropolymers, the PLC status is partially based on a mass-based cutoff 263 

for cellular uptake (MW of > 1000 Da or 10,000 Da, depending on reactive functional groups).  264 

This was summarized by Henry et al. (2018), who advocated for PLC status of some 265 

fluoropolymers by suggesting “Polymers are too large to penetrate cell membranes”.3 This 266 

position is not currently supported by the scientific literature related to the bioavailability of 267 

similarly sized micro- and nanoplastics of fluorine-free polymers. Nearly a decade ago, Jiang et 268 

al. (2011) showed that polystyrene nanoparticles of about 100 nm diameter are easily able to 269 

enter stem cells. 68 Similarly, Pitt et al. (2018) reported that 42 nm polystyrene nanoparticles 270 

were present in tissue and organs of maternally and co-parentally exposed F1 embryos/larvae, 271 

proving membrane crossing capabilities of polymer nanoparticles. 69 Polymer nanoparticles 272 

with molecular weights between 12,000 and 21,000 Da have been used to deliver 273 

chemotherapeutic drugs to cancer cells 70, and those on the order of tens of nanometers in size 274 

have been found to enter cells and eventually even cell nuclei. 71,72 Furthermore, Geiser et al. 275 

(2003) showed that inhaled spherical microparticles of Teflon were able to migrate into the 276 

surface lining layer of hamster alveoli, where interactions with lung cells could occur. 73 Many 277 

fluoropolymer substances are marketed in the form of suspensions with sub-micron 278 
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fluoropolymer particle sizes (see, e.g. https://www.teflon.com/en/products/dispersions), thus, 279 

release of bioavailable fluoropolymer particles is plausible. Based on such emerging evidence 280 

from environmental and medical research on diverse macromolecules 74, a blanket statement 281 

that polymers cannot enter cells is factually inaccurate.  282 

It is recognized that the global production of fluoropolymers (though not insignificant at 283 

320,000 tonnes in 20185, and increasing4) is relatively low in volume (at ~ 0.1%) compared to 284 

global production of plastics (300 million tonnes in 201875). However, detection of PTFE 285 

microparticles in Mediterranean fish and remote Arctic Ocean sediment samples demonstrates 286 

their global presence, albeit representing a small fraction of all detected microplastics.76,77  We 287 

note that the occurrence, exposure to, and toxicity of nano-plastics is an area of ongoing 288 

research with many unknowns.78 289 

 290 

8. Persistence and disposal of fluoropolymers 291 

Fluoropolymers are extremely persistent under environmental conditions45, which, in the same 292 

way as for other polymers, can lead to a wide array of issues, particularly with respect to 293 

disposal of fluoropolymer-containing wastes and products.79 Current concern over microplastics 294 

present in the oceans provides an example of why manufacture of polymers likely to be 295 

released into the environment should ideally be curtailed 80. Hence, production of persistent 296 

polymers, such as the highly persistent fluoropolymers, should occur only in time-limited 297 

essential use categories, i.e., critical for the safety, health and functioning of society. 298 

https://www.teflon.com/en/products/dispersions
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At the industrial scale, recycling of clean PTFE waste or scraps generated during production is 299 

already happening, often by converting these into PTFE micropowder (so-called fluoroadditives) 300 

and then using them to reduce wear rate and friction. 81 This has the unintended consequence 301 

of spreading fluoropolymers into more uses, and complicating any efforts of controlling and 302 

reducing their losses from the technosphere. More recently, a pilot-scale industrial high-303 

temperature recycling process (vacuum pyrolysis) to regenerate gas-phase monomers from 304 

end-of-life industrial-scale fluoropolymer products has been established. 82  305 

On the other hand, the recycling of fluoropolymers in consumer articles is not well established, 306 

as those fluoropolymers are typically contaminated by other substances and fillers, which makes 307 

recycling difficult. 82,83 Fluoropolymers applied to metal articles (e.g., nonstick frying pans) might 308 

end up in metal recycling streams, leading to their uncontrolled breakdown in metal smelters at 309 

high temperatures.  310 

Commercial bakeries regularly remove fluoropolymer coatings from their baking forms after 12-311 

24 months of use either via burning or blasting, with unknown emissions of PFASs and 312 

fluoropolymer particles to air, water and soil, and then have the forms re-coated. In Sweden 313 

alone, for example, every year some 20 000 baking pans are 'recoated' with a total baking surface 314 

of 500 000 m2. Stripping the old coating is performed by either 'burning off' at 450 °C for 4-5 h to 315 

'break down' the coating followed by grit blasting or by  water blasting at 1500 bar; it is unclear 316 

whether emissions are controlled.84  317 

Landfilling of fluoropolymers leads to contamination of leachates with PFAS and can contribute 318 

to releases of plastics and microplastics. Even with an exceptional chemical and thermal stability, 319 
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fluoropolymer particles will be disintegrated into microplastics by weathering and physical stress, 320 

which enables further dispersion and increased bioavailability. 85,86 Storage in abandoned mines 321 

and oil extraction fields is an option not routinely explored (except when court-ordered, see 322 

below), but is costly and logistically complicated.  323 

The remaining option for the disposal of fluoropolymers is incineration; its effectiveness to 324 

destroy PFAS and the tendency for formation of fluorinated or mixed halogenated organic 325 

byproducts is not well understood. 87  326 

Tetrafluoromethane and perfluoroethane have been identified as very stable combustion 327 

byproducts from the incineration of fluorine-containing waste, but given the extra stability of 328 

perfluorinated radicals, larger molecules might also be formed as a result of incomplete 329 

combustion.87,88 PTFE can produce PFCAs (including trifluoroacetic acid (TFA)) and other 330 

fluorinated compounds when heated to temperatures between 250 °C and 600 °C (relevant for 331 

uncontrolled burning). 89–91Myers et al. (2014) identified multiple thermal decomposition 332 

products of polychlorotrifluoroethylene (PCTFE), a common fluoropolymer, including 29 333 

perhalogenated carboxylic acid groups and 21 chlorine/fluorine-substituted polycyclic aromatic 334 

hydrocarbon groups, such as mixed halogenated benzenes and naphthalenes .92 335 

It is currently unclear whether typical municipal solid waste incinerators can safely destroy 336 

fluoropolymers without emissions of harmful PFAS and other problematic substances.87 There 337 

is evidence that PFOA itself is not thermally stable at elevated temperatures 93 or produced in 338 

high-temperature (> 1000 °C) incineration of flourotelomer based articles.94,95 Combustion 339 

within an optimized waste incinerator (870 °C, 4 s residence time of 0.3% PTFE by weight), as 340 
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opposed to the less strict 850 °C and 2 s required in the EU for municipal solid waste 341 

incinerators 96 yielded inconclusive results with respect to stack emissions of PFAS.97 PFOA was 342 

regularly detected in the exhaust, but the study was marred by elevated blanks. The authors 343 

were only able to account for 56-78% of the fluorine mass balance during incineration, meaning 344 

that a wide variety of other PFAS could have been released.97 In any case, municipal waste 345 

incinerators can only tolerate limited amounts of fluoropolymers due to the corrosive nature of 346 

the hydrogen fluoride released during the fluoropolymers’ thermal decomposition. 45 347 

 348 

9. Can fluoropolymers be considered separately from the use of PFAS as processing 349 

aids? 350 

For current manufacturing processes, it has not been clearly demonstrated that those 351 

fluoropolymer products that are made using emulsion polymerization (in contrast to 352 

suspension polymerization) can be produced without the use and emissions of PFAS as 353 

processing aids. For example, after discovery of widespread PFAS contamination of the Cape 354 

Fear watershed resulting from the use as various PFAS, including HFPO-DA, as processing aids in 355 

the production of fluoropolymers, a “Zero” emission policy to water was mandated in North 356 

Carolina.13 This includes the capture of PFAS-containing liquid processing waste, which is now 357 

moved out of the state for deep well injection98, merely relocating the environmental concern 358 

and creating the possibility of spills and leaking. In Dordrecht (Netherlands), regulations exist 359 

for air emissions (which are now restricted to 450 kg/y), direct (surface water) emissions 360 

(recently restricted to 5 kg/yr) and indirect emission to a local WWTP (recently restricted to 140 361 
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kg/yr, was 2 tonnes/yr in 2018 and 6 tonnes/yr in 2017).14 A report to the Nordic Council 362 

compiled additional production and release estimates for various per- and 363 

polyfluoroalkylethers.99 Emulsion polymerization processes with much reduced PFAS use,100 or 364 

without the use of PFAS,44,101 as processing aids have been developed, but it is unclear whether 365 

they will be implemented industry-wide. A phase-out of all PFAS as fluoropolymer processing 366 

aids would be a vast improvement, but would not address the current problems associated with 367 

impurities, as well as a lack of recycling and disposal. 368 

 369 

10. Are fluoropolymers polymers of low or high concern? 370 

The concerns we present above suggest that there is no sufficient evidence to consider 371 

fluoropolymers as being of low concern for environmental and human health. The group of 372 

fluoropolymers is too diverse to warrant a blanket exemption from additional regulatory 373 

review. Their extreme persistence and the emissions associated with their production, use, and 374 

disposal result in a high likelihood for human exposure as long as uses are not restricted. 375 

Concluding that some specific fluoropolymer substances are of low concern for environmental 376 

and human health can only be achieved by narrowly focusing on their use phase as was done by 377 

Henry et al (2018).3 378 

Ideally, the assessment and management of fluoropolymer products would consider the 379 

complete life cycle including associated emissions during production and disposal, as described 380 

above (see also Figure 1). The ECETOC CF4Polymers was an improvement over the early OECD 381 

PLC criteria by introducing life cycle considerations in polymer risk assessment and it is 382 
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recommended that these approaches are applied rather than focusing narrowly on the use 383 

phase. Monitoring emissions of harmful volatile and particulate PFAS at manufacturing and 384 

incineration sites is urgently needed. Furthermore, mapping of all industrial activities that 385 

produce, process and dispose/incinerate fluoropolymers would allow for targeted monitoring 386 

of potentially contaminated sites and protection of potentially exposed communities. 387 

Further, there is no scientific basis to separate and subsequently remove fluoropolymers from 388 

discussions of other PFAS as a class or in terms of their impacts on human or environmental 389 

health. The conclusion that all fluoropolymers are of low concern, simply based on tests on 390 

limited substances of four types of fluoropolymers,3 ignores major emissions linked to their 391 

production, and large uncertainties regarding their safe end-of-life treatment.  392 

In addition, there is only very limited information on the compositions, grades, etc. of the 393 

fluoropolymer products on the market. Not all fluoropolymer products meet the OECD PLC 394 

criteria, as suggested by Henry et al. (2018) in the conclusions of their paper; for example, 395 

functionalized fluoropolymers do not meet the criteria (e.g. Nafion) due to the presence of 396 

reactive functional groups. It would anyway be impossible to verify if all fluoropolymer products 397 

were PLC or not with the information available in the public domain. If PLC is part of a 398 

regulatory framework, PLC assessment should be performed on a product-by-product basis 399 

because various grades and commercial products of fluoropolymers may or may not meet the 400 

PLC criteria. For example, a PTFE product made in China cannot be assumed to be equivalent to 401 

the PTFE products tested by Henry et al. (2018).3 Our recommendation is to move toward the 402 

use of fluoropolymers in closed-loop mass flows in the technosphere and in limited essential-403 
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use categories, unless manufacturers and users can eliminate PFAS emissions from all parts of 404 

the life cycle of fluoropolymers. 405 
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Figure 1: Conceptual diagram of PFAS emissions during fluoropolymer production, product 420 

manufacturing and disposal. 421 

 422 

 423 
 424 

 425 

  426 
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Figure 2: Structures of replacement fluoropolymer processing aids detected in the environment 427 

 428 

a) Ammonium salt of hexafluoropropylene oxide dimer acid (HFPO-DA, CAS 62037-80-3, or “GenX”) 429 

detected in the environments of North Carolina and the Netherlands. 430 

 431 

b) Functionalized PFPE reported in Wang et al. 2013 (CAS 329238-24-6) now observed in Bormida River 432 

(Italy) and New Jersey.  Note: the e = ethyl group can range from 0 - 2 units and p = propyl group can 433 

range from 1 – 4 units with the ethyl group most likely being closest to the chlorine.  Additionally, the 434 

chlorine can be on the terminal carbon as shown or on the C2 position as CF3CF(Cl)CF2-O.    435 

 436 

c) Perfluoro{acetic acid, 2-[(5-methoxy-1,3-dioxolan-4-yl)oxy]}, ammonium salt (CAS No 1190931-27-1) 437 

(cC604) now observed in ground- and surface water in the Veneto region (Italy). 438 

https://echa.europa.eu/substance-information/-/substanceinfo/100.207.411 439 

 440 

d) Ammonium 4,8-dioxa-3H-perfluorononanoate (CAS 958445-44-8) (ADONA) detected in the Rhine 441 

River and serum samples. 442 

https://echa.europa.eu/substance-information/-/substanceinfo/100.207.411
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