8 research outputs found

    Orbital pacing and secular evolution of the Early Jurassic carbon cycle

    Get PDF
    Cyclic variations in Earth’s orbit drive periodic changes in the ocean–atmosphere system at a time scale of tens to hundreds of thousands of years. The Mochras ÎŽ13CTOC record illustrates the continued impact of long-eccentricity (405-ky) orbital forcing on the carbon cycle over at least ∌18 My of Early Jurassic time and emphasizes orbital forcing as a driving mechanism behind medium-amplitude ÎŽ13C fluctuations superimposed on larger-scale trends that are driven by other variables such as tectonically determined paleogeography and eruption of large igneous provinces. The dataset provides a framework for distinguishing between internal Earth processes and solar-system dynamics as the driving mechanism for Early Jurassic ÎŽ13C fluctuations and provides an astronomical time scale for the Sinemurian Stage

    Astronomical constraints on the duration of the Early Jurassic Pliensbachian Stage and global climatic fluctuations

    Get PDF
    The Early Jurassic was marked by multiple periods of major global climatic and palaeoceanographic change, biotic turnover and perturbed global geochemical cycles, commonly linked to large igneous province volcanism. This epoch was also characterised by the initial break-up of the super-continent Pangaea and the opening and formation of shallow-marine basins and ocean gateways, the timing of which are poorly constrained. Here, we show that the Pliensbachian Stage and the Sinemurian–Pliensbachian global carbon-cycle perturbation (marked by a negative shift in ÎŽ13CÎŽ13C of 2–4‰2–4‰), have respective durations of ∌8.7 and ∌2 Myr. We astronomically tune the floating Pliensbachian time scale to the 405 Kyr eccentricity solution (La2010d), and propose a revised Early Jurassic time scale with a significantly shortened Sinemurian Stage duration of 6.9±0.4 Myr6.9±0.4 Myr. When calibrated against the new time scale, the existing Pliensbachian seawater 87Sr/86Sr record shows relatively stable values during the first ∌2 Myr of the Pliensbachian, superimposed on the long-term Early Jurassic decline in 87Sr/86Sr. This plateau in 87Sr/86Sr values coincides with the Sinemurian–Pliensbachian boundary carbon-cycle perturbation. It is possibly linked to a late phase of Central Atlantic Magmatic Province (CAMP) volcanism that induced enhanced global weathering of continental crustal materials, leading to an elevated radiogenic strontium flux to the global ocean

    Effects of highly active antiretroviral therapy with nelfinavir in vertically HIV-1 infected children: 3 years of follow-up. Long-term response to nelfinavir in children

    Get PDF
    BACKGROUND: Antiretroviral treatment (ART) in children has special features and consequently, results obtained from clinical trials with antiretroviral drugs in adults may not be representative of children. Nelfinavir (NFV) is an HIV-1 Protease Inhibitor (PI) which has become as one of the first choices of PI for ART in children. We studied during a 3-year follow-up period the effects of highly active antiretroviral therapy with nelfinavir in vertically HIV-1 infected children. METHODS: Forty-two vertically HIV-infected children on HAART with NFV were involved in a multicentre prospective study. The children were monitored at least every 3 months with physical examinations, and blood sample collection to measure viral load (VL) and CD4+ cell count. We performed a logistic regression analysis to determinate the odds ratio of baseline characteristics on therapeutic failure. RESULTS: Very important increase in CD4+ was observed and VL decreased quickly and it remained low during the follow-up study. Children with CD4+ <25% at baseline achieved CD4+ >25% at 9 months of follow-up. HIV-infected children who achieved undetectable viral load (uVL) were less than 40% in each visit during follow-up. Nevertheless, HIV-infected children with VL >5000 copies/ml were less than 50% during the follow-up study. Only baseline VL was an important factor to predict VL control during follow-up. Virological failure at defined end-point was confirmed in 30/42 patients. Along the whole of follow-up, 16/42 children stopped HAART with NFV. Baseline characteristics were not associated with therapeutic change. CONCLUSION: NFV is a safe drug with a good profile and able to achieve an adequate response in children

    Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK)

    Get PDF
    The late Early Jurassic Toarcian Stage represents the warmest interval of the Jurassic Period, with an abrupt rise in global temperatures of up to ∌7 °C in mid-latitudes at the onset of the early Toarcian Oceanic Anoxic Event (T-OAE; ∌183 Ma). The T-OAE, which has been extensively studied in marine and continental successions from both hemispheres, was marked by the widespread expansion of anoxic and euxinic waters, geographically extensive deposition of organic-rich black shales, and climatic and environmental perturbations. Climatic and environmental processes following the T-OAE are, however, poorly known, largely due to a lack of study of stratigraphically well-constrained and complete sedimentary archives. Here, we present integrated geochemical and physical proxy data (high-resolution carbon-isotope data (ÎŽ13C), bulk and molecular organic geochemistry, inorganic petrology, mineral characterisation, and major- and trace-element concentrations) from the biostratigraphically complete and expanded entire Toarcian succession in the Llanbedr (Mochras Farm) Borehole, Cardigan Bay Basin, Wales, UK. With these data, we (1) construct the first high-resolution biostratigraphically calibrated chemostratigraphic reference record for nearly the complete Toarcian Stage, (2) establish palaeoceanographic and depositional conditions in the Cardigan Bay Basin, (3) show that the T-OAE in the hemipelagic Cardigan Bay Basin was marked by the occurrence of gravity-flow deposits that were likely linked to globally enhanced sediment fluxes to continental margins and deeper marine (shelf) basins, and (4) explore how early Toarcian (tenuicostatum and serpentinum zones) siderite formation in the Cardigan Bay Basin may have been linked to low global oceanic sulphate concentrations and elevated supply of iron (Fe) from the hinterland, in response to climatically induced changes in hydrological cycling, global weathering rates and large-scale sulphide and evaporite deposition

    Initial results of coring at Prees, Cheshire Basin, UK (ICDP JET project): towards an integrated stratigraphy, timescale, and Earth system understanding for the Early Jurassic.

    Get PDF
    International audienceDrilling for the International Continental Scientific Drilling Program (ICDP) Early Jurassic Earth System and Timescale project (JET) was undertaken between October 2020 and January 2021. The drill site is situated in a small-scale synformal basin of the latest Triassic to Early Jurassic age that formed above the major Permian–Triassic half-graben system of the Cheshire Basin. The borehole is located to recover an expanded and complete succession to complement the legacy core from the Llanbedr (Mochras Farm) borehole drilled through 1967–1969 on the edge of the Cardigan Bay Basin, North Wales. The overall aim of the project is to construct an astronomically calibrated integrated timescale for the Early Jurassic and to provide insights into the operation of the Early Jurassic Earth system. Core of Quaternary age cover and Early Jurassic mudstone was obtained from two shallow partially cored geotechnical holes (Prees 2A to 32.2 m below surface (m b.s.) and Prees 2B to 37.0 m b.s.) together with Early Jurassic and Late Triassic mudstone from the principal hole, Prees 2C, which was cored from 32.92 to 651.32 m (corrected core depth scale). Core recovery was 99.7 % for Prees 2C. The ages of the recovered stratigraphy range from the Late Triassic (probably Rhaetian) to the Early Jurassic, Early Pliensbachian (Ibex Ammonoid Chronozone). All ammonoid chronozones have been identified for the drilled Early Jurassic strata. The full lithological succession comprises the Branscombe Mudstone and Blue Anchor formations of the Mercia Mudstone Group, the Westbury and Lilstock formations of the Penarth Group, and the Redcar Mudstone Formation of the Lias Group. A distinct interval of siltstone is recognized within the Late Sinemurian of the Redcar Mudstone Formation, and the name “Prees Siltstone Member” is proposed. Depositional environments range from playa lake in the Late Triassic to distal offshore marine in the Early Jurassic. Initial datasets compiled from the core include radiography, natural gamma ray, density, magnetic susceptibility, and X-ray fluorescence (XRF). A full suite of downhole logs was also run. Intervals of organic carbon enrichment occur in the Rhaetian (Late Triassic) Westbury Formation and in the earliest Hettangian and earliest Pliensbachian strata of the Redcar Mudstone Formation, where up to 4 % total organic carbon (TOC) is recorded. Other parts of the succession are generally organic-lean, containing less than 1 % TOC. Carbon-isotope values from bulk organic matter have also been determined, initially at a resolution of ∌ 1 m, and these provide the basis for detailed correlation between the Prees 2 succession and adjacent boreholes and Global Stratotype Section and Point (GSSP) outcrops. Multiple complementary studies are currently underway and preliminary results promise an astronomically calibrated biostratigraphy, magnetostratigraphy, and chemostratigraphy for the combined Prees and Mochras successions as well as insights into the dynamics of background processes and major palaeo-environmental changes

    Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer

    No full text
    corecore