5 research outputs found

    Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

    Get PDF
    Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cisregulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'. \uc2\ua9 The Author(s) 2013. Published by Oxford University Press

    Sequence determinants of enhancer activity during Ciona intestinalis development

    No full text
    Les enhancers sont des rĂ©gulateurs cruciaux de l’expression des gĂšnes pendant le dĂ©veloppement embryonnaire. L’ascidie Ciona intestinalis est un organisme-modĂšle qui se prĂȘte Ă  l’étude de ces sĂ©quences cis-rĂ©gulatrices car ses enhancers sont gĂ©nĂ©ralement petits et compacts, et le lignage invariant des cellules chez l’embryon permet de visualiser leur activitĂ© avec une rĂ©solution cellulaire. Deux signatures indĂ©pendantes associĂ©es Ă  l’activitĂ© d’un enhancer avaient Ă©tĂ© identifiĂ©es : la prĂ©sence de sites de fixation pour des facteurs de transcription spĂ©cifiques, et une signature dinuclĂ©otidique globale Ă  l’échelle des enhancers. (Khoueiry 2010). Cependant, si ces signatures corrĂšlent avec l’activitĂ© des enhancers, elles ne permettent pas d’identifier de nouveaux enhancers grĂące Ă  leur sĂ©quence. Pendant ma thĂšse, j’ai utilisĂ© un enhancer neural prĂ©coce de Ciona, le trĂšs bien caractĂ©risĂ© Ă©lĂ©ment-a du gĂšne Otx, comme enhancer-modĂšle. Ce petit enhancer (55pb), est liĂ© par les facteurs de transcription GATA-a et ETS1/2 et activĂ© par la voie de signalisation FGF. Afin de mieux comprendre les dĂ©terminants de l’activitĂ© neurale prĂ©coce d’un enhancer, j’ai testĂ© l’impact de mutations ponctuelles affectant l’affinitĂ© de sites de fixation de l’élĂ©ment-a pour les facteurs de transcription. J’ai Ă©galement randomisĂ© les sĂ©quences intercalantes, situĂ©es entre les sites de fixation pour ETS et GATA dans quatre clusters de ces sites.Nos rĂ©sultats suggĂšrent au moins deux niveaux de contrĂŽle de la rĂ©gulation en cis : i) la spĂ©cificitĂ© spatiotemporelle de l’activitĂ© d’un enhancer est dĂ©finie par l’identitĂ© des sites de fixation des facteurs de transcription, et ii) son niveau d’activitĂ© dĂ©pend Ă  la fois de l’affinitĂ© des facteurs de transcription pour leurs sites de fixation et la composition des sĂ©quences intercalantes. La majoritĂ© des variants randomisĂ©s de l’élĂ©ment-a sont actifs dans les mĂȘmes lignĂ©es cellulaires que le sauvage et leurs niveaux d’activitĂ© sont trĂšs divers. Le mĂȘme rĂ©sultat est obtenu en randomisant les sĂ©quences intercalantes d’un autre cluster ETS/GATA actif. La randomisation de ces sĂ©quences a mĂȘme confĂ©rĂ© de l’activitĂ© enhancer Ă  de nombreux variants de clusters inactifs. En accord avec leur activitĂ© neurale prĂ©coce et la prĂ©sence de sites de fixations pour ETS et GATA, ces variants, comme l’élĂ©ment-a, rĂ©pondent Ă  l’induction neurale de FGF. Nous n’avons pas rĂ©ussi Ă  expliquer l’action des sĂ©quences intercalantes sur l’activitĂ© des enhancers par des caractĂ©ristiques simples de leurs sĂ©quences (nuclĂ©otidique ou dinuclĂ©otidique), et l’on ne comprend pas pourquoi il est si simple de crĂ©er un enhancer synthĂ©tique quand la majoritĂ© des clusters gĂ©nomiques de sites de fixations putatifs pour ETS et GATA sont inactifs. En utilisant une approche de fixation in vitro des facteurs de transcription, nous avons montrĂ© que la randomisation des sĂ©quences intercalantes peut affecter la fixation d’un facteur de transcription sur l’élĂ©ment a, sans changer la sĂ©quence primaire du site de fixation, mais que la fixation sur l'Ă©lĂ©ment entier ne peut pas toujours ĂȘtre expliquĂ©e par la fixation sur les sites isolĂ©es. Ces rĂ©sultats suggĂšrent que la structure physique de l’hĂ©lice d’ADN autour des sites de fixation peut jouer un rĂŽle important dans le contrĂŽle de l’activitĂ© d’un gĂšne.Enhancers are crucial elements for the control of gene expression during embryonic development. The ascidian Ciona intestinalis offers unique experimental features to study these cis-regulatory sequences: enhancers are generally small and compact and their activity can be tracked at the single cell level thanks to the invariant cell lineage of ascidian embryos.Previous work identified two independent signatures associated with enhancer activity: the presence of specific transcription factors binding sites (TFBS) and a global dinucleotide signature along enhancers (Khoueiry, 2010). Although they correlate with enhancer activity, these signatures are insufficient to identify enhancer sequences from their sole sequence. During my thesis, I used a well-characterized early neural Ciona enhancer, the a-element of the Otx gene, as a model enhancer. This small (55pb) enhancer, is bound by GATA-a and ETS1/2 and is activated by the FGF pathway. To better understand the determinants of early neural enhancer activity, I tested the impact of point mutations affecting the affinity of the a-element TFBS for their binding TF and of the randomization of the spacer sequences that separate the TFBS in four ETS and GATA binding site clusters.Our results suggest at least two levels of cis-regulatory control: spatiotemporal specificity of enhancer activity is encoded in the identity of TF-binding sites, while the level of enhancer activity is set both by the affinity of TFs for their binding sites and by the composition of the spacer sequences. A surprisingly high number of variants of the a-element with randomized spacers are active, always in the same cell lineages as the WT. These variants, however, display a wide range of activity levels. This effect is also observed when the spacers in another active ETS/GATA cluster are randomized. Randomization of the spacers can even confer enhancer activity to a large fraction of inactive cluster variants. Consistent with their early neural activity and with the presence of ETS- and GATA-binding sites, these variants are, like the a-element, responsive to the FGF neural inducer.We could not link the action of the spacers on enhancer activity to any simple nucleotide or dinucleotide sequence features and it currently remains unclear why it is so easy to create a synthetic enhancer while most putative genomic ETS/GATA clusters are inactive. Using in vitro transcription factor binding assays, we showed that randomization of spacer sequences can affect TF binding to the a-element without changing the primary sequence of the binding site, and that extended minimal TFBS do not always recapitulate binding to the whole element. These results suggest that the physical structure of the DNA helix around the binding sites may play an important role in the control of enhancer activity

    Signatures nucléotidiques de l'activité des enhancers développementaux chez l'ascidie Ciona intestinalis

    No full text
    Enhancers are crucial elements for the control of gene expression during embryonic development. The ascidian Ciona intestinalis offers unique experimental features to study these cis-regulatory sequences: enhancers are generally small and compact and their activity can be tracked at the single cell level thanks to the invariant cell lineage of ascidian embryos.Previous work identified two independent signatures associated with enhancer activity: the presence of specific transcription factors binding sites (TFBS) and a global dinucleotide signature along enhancers (Khoueiry, 2010). Although they correlate with enhancer activity, these signatures are insufficient to identify enhancer sequences from their sole sequence. During my thesis, I used a well-characterized early neural Ciona enhancer, the a-element of the Otx gene, as a model enhancer. This small (55pb) enhancer, is bound by GATA-a and ETS1/2 and is activated by the FGF pathway. To better understand the determinants of early neural enhancer activity, I tested the impact of point mutations affecting the affinity of the a-element TFBS for their binding TF and of the randomization of the spacer sequences that separate the TFBS in four ETS and GATA binding site clusters.Our results suggest at least two levels of cis-regulatory control: spatiotemporal specificity of enhancer activity is encoded in the identity of TF-binding sites, while the level of enhancer activity is set both by the affinity of TFs for their binding sites and by the composition of the spacer sequences. A surprisingly high number of variants of the a-element with randomized spacers are active, always in the same cell lineages as the WT. These variants, however, display a wide range of activity levels. This effect is also observed when the spacers in another active ETS/GATA cluster are randomized. Randomization of the spacers can even confer enhancer activity to a large fraction of inactive cluster variants. Consistent with their early neural activity and with the presence of ETS- and GATA-binding sites, these variants are, like the a-element, responsive to the FGF neural inducer.We could not link the action of the spacers on enhancer activity to any simple nucleotide or dinucleotide sequence features and it currently remains unclear why it is so easy to create a synthetic enhancer while most putative genomic ETS/GATA clusters are inactive. Using in vitro transcription factor binding assays, we showed that randomization of spacer sequences can affect TF binding to the a-element without changing the primary sequence of the binding site, and that extended minimal TFBS do not always recapitulate binding to the whole element. These results suggest that the physical structure of the DNA helix around the binding sites may play an important role in the control of enhancer activity.Les enhancers sont des rĂ©gulateurs cruciaux de l’expression des gĂšnes pendant le dĂ©veloppement embryonnaire. L’ascidie Ciona intestinalis est un organisme-modĂšle qui se prĂȘte Ă  l’étude de ces sĂ©quences cis-rĂ©gulatrices car ses enhancers sont gĂ©nĂ©ralement petits et compacts, et le lignage invariant des cellules chez l’embryon permet de visualiser leur activitĂ© avec une rĂ©solution cellulaire. Deux signatures indĂ©pendantes associĂ©es Ă  l’activitĂ© d’un enhancer avaient Ă©tĂ© identifiĂ©es : la prĂ©sence de sites de fixation pour des facteurs de transcription spĂ©cifiques, et une signature dinuclĂ©otidique globale Ă  l’échelle des enhancers. (Khoueiry 2010). Cependant, si ces signatures corrĂšlent avec l’activitĂ© des enhancers, elles ne permettent pas d’identifier de nouveaux enhancers grĂące Ă  leur sĂ©quence. Pendant ma thĂšse, j’ai utilisĂ© un enhancer neural prĂ©coce de Ciona, le trĂšs bien caractĂ©risĂ© Ă©lĂ©ment-a du gĂšne Otx, comme enhancer-modĂšle. Ce petit enhancer (55pb), est liĂ© par les facteurs de transcription GATA-a et ETS1/2 et activĂ© par la voie de signalisation FGF. Afin de mieux comprendre les dĂ©terminants de l’activitĂ© neurale prĂ©coce d’un enhancer, j’ai testĂ© l’impact de mutations ponctuelles affectant l’affinitĂ© de sites de fixation de l’élĂ©ment-a pour les facteurs de transcription. J’ai Ă©galement randomisĂ© les sĂ©quences intercalantes, situĂ©es entre les sites de fixation pour ETS et GATA dans quatre clusters de ces sites.Nos rĂ©sultats suggĂšrent au moins deux niveaux de contrĂŽle de la rĂ©gulation en cis : i) la spĂ©cificitĂ© spatiotemporelle de l’activitĂ© d’un enhancer est dĂ©finie par l’identitĂ© des sites de fixation des facteurs de transcription, et ii) son niveau d’activitĂ© dĂ©pend Ă  la fois de l’affinitĂ© des facteurs de transcription pour leurs sites de fixation et la composition des sĂ©quences intercalantes. La majoritĂ© des variants randomisĂ©s de l’élĂ©ment-a sont actifs dans les mĂȘmes lignĂ©es cellulaires que le sauvage et leurs niveaux d’activitĂ© sont trĂšs divers. Le mĂȘme rĂ©sultat est obtenu en randomisant les sĂ©quences intercalantes d’un autre cluster ETS/GATA actif. La randomisation de ces sĂ©quences a mĂȘme confĂ©rĂ© de l’activitĂ© enhancer Ă  de nombreux variants de clusters inactifs. En accord avec leur activitĂ© neurale prĂ©coce et la prĂ©sence de sites de fixations pour ETS et GATA, ces variants, comme l’élĂ©ment-a, rĂ©pondent Ă  l’induction neurale de FGF. Nous n’avons pas rĂ©ussi Ă  expliquer l’action des sĂ©quences intercalantes sur l’activitĂ© des enhancers par des caractĂ©ristiques simples de leurs sĂ©quences (nuclĂ©otidique ou dinuclĂ©otidique), et l’on ne comprend pas pourquoi il est si simple de crĂ©er un enhancer synthĂ©tique quand la majoritĂ© des clusters gĂ©nomiques de sites de fixations putatifs pour ETS et GATA sont inactifs. En utilisant une approche de fixation in vitro des facteurs de transcription, nous avons montrĂ© que la randomisation des sĂ©quences intercalantes peut affecter la fixation d’un facteur de transcription sur l’élĂ©ment a, sans changer la sĂ©quence primaire du site de fixation, mais que la fixation sur l'Ă©lĂ©ment entier ne peut pas toujours ĂȘtre expliquĂ©e par la fixation sur les sites isolĂ©es. Ces rĂ©sultats suggĂšrent que la structure physique de l’hĂ©lice d’ADN autour des sites de fixation peut jouer un rĂŽle important dans le contrĂŽle de l’activitĂ© d’un gĂšne

    ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates

    Get PDF
    International audienceANISEED (https://www.aniseed.cnrs.fr) is the main model organism database for the worldwide community of scientists working on tunicates, the vertebrate sister-group. Information provided for each species includes functionally-annotated gene and transcript models with orthology relationships within tunicates, and with echinoderms, cephalochordates and vertebrates. Beyond genes the system describes other genetic elements, including repeated elements and cis-regulatory modules. Gene expression profiles for several thousand genes are formalized in both wild-type and experimentally-manipulated conditions , using formal anatomical ontologies. These data can be explored through three complementary types of browsers, each offering a different viewpoint. A developmental browser summarizes the information in a gene-or territory-centric manner. Advanced genomic browsers integrate the genetic features surrounding genes or gene sets within a species. A Genomicus synteny browser explores the conservation of local gene order across deuteros-tome. This new release covers an extended taxo-nomic range of 14 species, including for the first time a non-ascidian species, the appendicularian Oiko-pleura dioica. Functional annotations, provided for each species, were enhanced through a combination of manual curation of gene models and the development of an improved orthology detection pipeline. Finally , gene expression profiles and anatomical territories can be explored in 4D online through the newly developed Morphonet morphogenetic browser
    corecore