5 research outputs found

    Human aquaporins: regulators of transcellular water flow

    Get PDF
    Background: Emerging evidence supports the view that (AQP) aquaporin water channels are regulators of transcellular water flow. Consistentwith their expression in most tissues, AQPs are associatedwith diverse physiological and pathophysiological processes. Scope of review: AQP knockout studies suggest that the regulatory role of AQPs, rather than their action as passive channels, is their critical function. Transport through all AQPs occurs by a common passive mechanism, but their regulation and cellular distribution varies significantly depending on cell and tissue type; the role of AQPs in cell volumeregulation (CVR) is particularly notable. This reviewexamines the regulatory role of AQPs in transcellular water flow, especially in CVR.We focus on key systems of the human body, encompassing processes as diverse as urine concentration in the kidney to clearance of brain oedema. Major conclusions: AQPs are crucial for the regulation of water homeostasis, providing selective pores for the rapidmovement ofwater across diverse cellmembranes and playing regulatory roles in CVR. Gatingmechanisms have been proposed for human AQPs, but have only been reported for plant andmicrobial AQPs. Consequently, it is likely that the distribution and abundance of AQPs in a particular membrane is the determinant of membrane water permeability and a regulator of transcellular water flow. General significance: Elucidating the mechanisms that regulate transcellular water flow will improve our understanding of the human body in health and disease. The central role of specific AQPs in regulating water homeostasis will provide routes to a range of novel therapies. This article is part of a Special Issue entitled Aquaporins

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Mini-SAR: An Imaging Radar for the Chandrayaan-1 Mission to the Moon

    No full text
    The debate on the presence of ice at the poles of the Moon continues. We will fly a small imaging radar on the Indian Chandrayaan mission to the Moon, to be launched in September, 2007. Mini-SAR will map the scattering properties of the lunar poles, determining the presence and extent of polar ice

    Positive regulation of raphe serotonin neurons by serotonin 2B receptors

    No full text
    International audienceSerotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT2B-receptor stimulation by BW723C86 counteracted 5-HT1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT1A-autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT2B receptor acts as a direct positive modulator of serotonin Pet1-positive neurons in an opposite way as the known 5-HT1A-negative autoreceptor
    corecore