240 research outputs found

    Cellular pharmacokinetics of telavancin, a novel lipoglycopeptide antibiotic, and analysis of lysosomal changes in cultured eukaryotic cells (J774 mouse macrophages and rat embryonic fibroblasts)

    Get PDF
    Background Telavancin is a lipoglycopeptide with multiple mechanisms of action that include membrane-destabilizing effects towards bacterial cells. It shows bactericidal activity against forms of Staphylococcus aureus (phagolysosomal infection) with different resistance phenotypes [methicillin-resistant S. aureus, vancomycin-intermediate S. aureus or vancomycin-resistant S. aureus]. We examine here the uptake, efflux and intracellular distribution of telavancin in eukaryotic cells as well as its potential to induce lysosomal changes (in comparison with vancomycin and oritavancin). Methods J774 macrophages and rat embryo fibroblasts were exposed for up to 24 and 72 h to telavancin (5-90 mg/L). The following studies were performed: measurement of (14)C-labelled telavancin cellular uptake and subcellular distribution (cell fractionation), determination of pericellular membrane integrity (lactate dehydrogenase release), electron microscopy with morphometric analysis of changes in lysosome size and determination of total phospholipid and cholesterol content. Results The uptake of telavancin proceeded linearly as a function of time and concentration in both cell types (clearance rate of approximately 10 mL/g of protein/h). Efflux (macrophages) was approximately 5.7-fold slower. Telavancin subcellular distribution was superimposable on that of a lysosomal marker (N-acetyl-beta-hexosaminidase). It did not cause an increase in the release of lactate dehydrogenase and did not induce significant increases in total phospholipid or cholesterol content. It caused only mild morphological lysosomal alterations (similar to vancomycin and much less than oritavancin by morphometric analysis). Conclusions Telavancin is taken up by eukaryotic cells and localizes in lysosomes, causing mild morphological alterations without evidence of lipid metabolism alterations. These data support our observations that telavancin is active against intracellular S. aureus

    On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective

    Get PDF
    Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria

    Correlation between cytotoxicity induced by Pseudomonas aeruginosa clinical isolates from acute infections and IL-1β secretion in a model of human THP-1 monocytes

    Get PDF
    Type III secretion system (T3SS) in Pseudomonas aeruginosa is associated with poor clinical outcome in acute infections. T3SS allows for injection of bacterial exotoxins (e.g. ExoU or ExoS) into the host cell, causing cytotoxicity. It also activates the cytosolic NLRC4 inflammasome, activating caspase-1, inducing cytotoxicity and release of mature IL-1β, which impairs bacterial clearance. In addition, flagellum-mediated motility has been suggested to also modulate inflammasome response and IL-1β release. Yet the capacity of clinical isolates to induce IL-1β release and its relation with cytotoxicity have never been investigated. Using 20 clinical isolates from acute infections with variable T3SS expression levels and human monocytes, our aim was to correlate IL-1β release with toxin expression, flagellar motility and cytotoxicity. ExoU-producing isolates caused massive cell death but minimal release of IL-1β, while those expressing T3SS but not ExoU (i.e. expressing ExoS or no toxins) induced caspase-1 activation and IL-1β release, the level of which was correlated with cytotoxicity. Both effects were prevented by a specific caspase-1 inhibitor. Flagellar motility was not correlated with cytotoxicity or IL-1β release. No apoptosis was detected. Thus, T3SS cytotoxicity is accompanied by a modification in cytokine balance for P. aeruginosa clinical isolates that do not express Exo

    Variability of extracellular vesicle release during storage of red blood cell concentrates is associated with differential membrane alterations, including loss of cholesterol-enriched domains

    Get PDF
    Transfusion of red blood cell concentrates is the most common medical procedure to treat anaemia. However, their storage is associated with development of storage lesions, including the release of extracellular vesicles. These vesicles affect in vivo viability and functionality of transfused red blood cells and appear responsible for adverse post-transfusional complications. However, the biogenesis and release mechanisms are not fully understood. We here addressed this issue by comparing the kinetics and extents of extracellular vesicle release as well as red blood cell metabolic, oxidative and membrane alterations upon storage in 38 concentrates. We showed that extracellular vesicle abundance increased exponentially during storage. The 38 concentrates contained on average 7 × 1012 extracellular vesicles at 6 weeks (w) but displayed a ∼40-fold variability. These concentrates were subsequently classified into 3 cohorts based on their vesiculation rate. The variability in extracellular vesicle release was not associated with a differential red blood cell ATP content or with increased oxidative stress (in the form of reactive oxygen species, methaemoglobin and band3 integrity) but rather with red blood cell membrane modifications, i.e., cytoskeleton membrane occupancy, lateral heterogeneity in lipid domains and transversal asymmetry. Indeed, no changes were noticed in the low vesiculation group until 6w while the medium and the high vesiculation groups exhibited a decrease in spectrin membrane occupancy between 3 and 6w and an increase of sphingomyelin-enriched domain abundance from 5w and of phosphatidylserine surface exposure from 8w. Moreover, each vesiculation group showed a decrease of cholesterol-enriched domains associated with a cholesterol content increase in extracellular vesicles but at different storage time points. This observation suggested that cholesterol-enriched domains could represent a starting point for vesiculation. Altogether, our data reveal for the first time that the differential extent of extracellular vesicle release in red blood cell concentrates did not simply result from preparation method, storage conditions or technical issues but was linked to membrane alterations

    Characterization of the Interactions between Fluoroquinolone Antibiotics and Lipids: a Multitechnique Approach

    Get PDF
    Probing drug/lipid interactions at the molecular level represents an important challenge in pharmaceutical research and membrane biophysics. Previous studies showed differences in accumulation and intracellular activity between two fluoroquinolones, ciprofloxacin and moxifloxacin, that may actually result from their differential susceptibility to efflux by the ciprofloxacin transporter. In view of the critical role of lipids for the drug cellular uptake and differences observed for the two closely related fluoroquinolones, we investigated the interactions of these two antibiotics with lipids, using an array of complementary techniques. Moxifloxacin induced, to a greater extent than ciprofloxacin, an erosion of the DPPC domains in the DOPC fluid phase (atomic force microscopy) and a shift of the surface pressure-area isotherms of DOPC/DPPC/fluoroquinolone monolayer toward lower area per molecule (Langmuir studies). These effects are related to a lower propensity of moxifloxacin to be released from lipid to aqueous phase (determined by phase transfer studies and conformational analysis) and a marked decrease of all-trans conformation of acyl-lipid chains of DPPC (determined by ATR-FTIR) without increase of lipid disorder and change in the tilt between the normal and the germanium surface (also determined by ATR-FTIR). All together, differences of ciprofloxacin as compared to moxifloxacin in their interactions with lipids could explain differences in their cellular accumulation and susceptibility to efflux transporters
    corecore