57 research outputs found

    Dissection of the genetic background of childhood onset progressive myoclonic epilepsies

    Get PDF
    The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic seizures, psychomotor regression and ataxia. Different disorders have been classified as PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity that has onset in childhood, being the most common cause of neurodegeneration in children. The primary aim of this thesis was to dissect the molecular genetic background of patients with childhood onset PME by studying candidate genes and attempting to identify novel PME-associated genes. Another specific aim was to study the primary protein properties of the most recently identified member of the NCL-causing proteins, MFSD8. To dissect the genetic background of a cohort of Turkish patients with childhood onset PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which together with 56 mutations found by collaborators raised the total number of known NCL mutations to 364. Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had originally been identified in a subset of mainly Turkish patients as the underlying cause of CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients from nine different countries were provided with a CLN7 molecular diagnosis, denoting the wide geographical occurrence of MFSD8 defects. The mutations are private with only one having been established by a founder-effect in the Roma population from the former Czechoslovakia. All mutations identified except one are associated with the typical clinical picture of variant late-infantile NCL. To address the trafficking properties of MFSD8, lysosomal targeting of the protein was confirmed in both neuronal and non-neuronal cells. The major determinant for this lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes the direct trafficking pathway en route to the lysosomes. Expression studies revealed the neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer as the predominant regions in which MFSD8 is expressed. To identify novel genes associated with childhood onset PME, a single nucleotide polymorphism (SNP) genomewide scan was performed in three small families and 18 sporadic patients followed by homozygosity mapping to determine the candidate loci. One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene that had previously been shown to cause infantile neuroaxonal dystrophy. Application of next-generation sequencing of candidate regions in the remaining two families led to identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 were reported to have early onset PME, rapid disease progression leading to dementia and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and the clinical delineation of their phenotype establish KCTD7 as a gene for early onset PME. The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly associated with childhood onset symptomatic epilepsy. The disease-associated role of TXNDC6 awaits verification through identification of additional mutations in patients with similar phenotypes. Completion of the genetic spectrum underlying childhood onset PMEs and understanding of the gene products functions will comprise important steps towards understanding the underlying pathogenetic mechanisms, and will possibly shed light on the general processes of neurodegeneration and nervous system regulation, facilitating the diagnosis, classification and possibly treatment of the affected cases.Ei saatavill

    Neonatal Alexander Disease : Novel GFAP Mutation and Comparison to Previously Published Cases

    Get PDF
    Alexander disease (AxD) is a genetic leukodystrophy caused by GFAP mutations leading to astrocyte dysfunction. Neonatal AxD is a rare phenotype with onset in the first month of life. The proband, belonging to a large pedigree with dominantly inherited benign familial neonatal epilepsy (BFNE), had a phenotype distinct from the rest of the family, with hypotonia and macrocephaly in addition to drug-resistant neonatal seizures. The patient deteriorated and passed away at 6 weeks of age. The pathological and neuroimaging data were consistent with the diagnosis of AxD. Genetic analysis of the proband identified a novel de novo GFAP missense mutation and a KCNQ2 splice site mutation segregating with the BFNE phenotype in the family. The GFAP mutation was located in the coil 2B region of GFAP protein, similar to most neonatal-onset AxD cases with an early death. The clinical and neuroradiological features of the previously published neonatal AxD patients are presented. This study further supports the classification of neonatal-onset AxD as a distinct phenotype based on the age of onset.Peer reviewe

    Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies

    Get PDF
    Transcription factors operate in developmental processes to mediate inductive events and cell competence, and perturbation of their function or regulation can dramatically affect morphogenesis, organogenesis, and growth. We report that a narrow spectrum of amino-acid substitutions within the transactivation domain of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF), a leucine zipper-containing transcription factor of the AP1 superfamily, profoundly affect development. Seven different de novo missense mutations involving conserved residues of the four GSK3 phosphorylation motifs were identified in eight unrelated individuals. The distinctive clinical phenotype, for which we propose the eponym Aymé-Gripp syndrome, is not limited to lens and eye defects as previously reported for MAF/Maf loss of function but includes sensorineural deafness, intellectual disability, seizures, brachycephaly, distinctive flat facial appearance, skeletal anomalies, mammary gland hypoplasia, and reduced growth. Disease-causing mutations were demonstrated to impair proper MAF phosphorylation, ubiquitination and proteasomal degradation, perturbed gene expression in primary skin fibroblasts, and induced neurodevelopmental defects in an in vivo model. Our findings nosologically and clinically delineate a previously poorly understood recognizable multisystem disorder, provide evidence for MAF governing a wider range of developmental programs than previously appreciated, and describe a novel instance of protein dosage effect severely perturbing developmen

    Transcatheter Closure of Secundum Atrial Septal Defect Using the Amplatzer Device: Single Center Experience in 140 Patients

    Get PDF
    BACKGROUND: Transcatheter closure of secundum atrial septal defect (ASD) is nowadays widely practiced and has replaced surgical ASD closure in many centers. Improvements in design have made the closure devices retrievable, and reduction in the size of the introduction systems allows interventional treatment even in young patients. In this paper we present our experience with the Amplatzer septal occluder device in patients with ASD. PATIENTS AND METHODS: Between October 2002 and February 2006, 206 consecutive patients with a significant ASD, demonstrated by initial transthoracic echocardiography (TTE), were considered for transcatheter closure with the Amplatzer septal occluder. A total of 156 patients underwent cardiac catheterization, and 140 patients had successful transcatheter ASD closure. Routine examination before catheterization included a standard ECG, a chest x ray, blood tests and TTE. The initial TTE showed the location of the ASD, its septal rim, and its diameter and also helped to measure the length of the interatrial septum in the four-chamber view. These measurements were used to assess the feasibility of transcatheter closure with the Amplatzer device. The “stretched” diameter of the ASD, determined by a balloon sizing catheter, was used to select the diameter of the waist of the device. The size of the selected device was 1 to 2 mm larger than the stretched diameter of the defect. Transesophageal echocardiography was used to monitor the implantation procedure. RESULTS: The Amplatzer device was finally employed in 140 patients for percutaneous closure of ASD. The age of patients ranged between 5.3 and 70 years, median 21.9 years. Procedure time ranged between 25 and 240 minutes, median 60 minutes; fluoroscopy time ranged between 3.5 and 45 minutes, median 12 minutes. The size of the selected device ranged between 6-40 mm. Two devices were implanted in two patients. Serious procedure related complications (embolization and perforation of the left atrial wall) occurred in two cases. At follow up (10 days to 3.4 years, median 2.3 years) complete closure was documented in 97% of this patient group. Unrecognized during implantation, but detected after release, small additional defect with trivial residual shunt was documented in 4 patients. A young critically ill patient, cyanotic due to right-to-left shunt, with complex congenital heart disease developed a brain abscess three months after implantation. CONCLUSION: Percutaneous ASD closure with use of the Amplatzer device in this cohort of 140 patients was highly successful with a low complication rate

    Transcatheter Closure of Secundum Atrial Septal Defect Using the Amplatzer Device: Single Center Experience in 140 Patients

    Get PDF
    In this paper we present our experience with the Amplatzer septal occluder device, employed in 140 patients for percutaneous closure of atrial secundum defect (ASD), from October 2002 to February 2006. The age of patients ranged between 5.3 and 70 years, median 21.9 years. Procedure time ranged between 25 and 240 minutes, median 60 minutes; fluoroscopy time ranged between 3.5 and 45 minutes, median 12 minutes. Transoesophageal echocardiography was used to monitor the implantation procedure. The size of the selected device was 1 to 2 mm larger than the stretched diameter of the defect and ranged between 6-40 mm. Two devices have been implanted in two patients. Serious procedure related complications (embolization and perforation of the left atrial wall) occurred in two cases. At follow up (10 days to 3.4 years, median 2.3 years) complete closure was documented in 97% of this patient group. Unrecognized during implantation, but detected after release, small additional defect with trivial residual shunt was documented in 4 patients. A young critically ill patient, cyanotic due to right-to-left shunt, with complex congenital heart disease developed a brain abscess three months after implantation. In conclusion, percutaneous ASD closure with use of the Amplatzer device in this patient cohort was highly successful with a low complication rate

    Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor

    Get PDF
    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorde

    Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights

    Get PDF
    Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3, in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS

    Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane

    Get PDF
    The effects of the metal oxide support on the activity, selectivity, resistance to carbon deposition and high temperature oxidative aging on the Rh-catalyzed dry reforming of methane (DRM) were investigated. Three Rh catalysts supported on oxides characterized by very different oxygen storage capacities and labilities (γ-Al 2O 3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) were studied in the temperature interval 400–750 °C under both integral and differential reaction conditions. ACZ and CZ promoted CO 2 conversion, yielding CO-enriched synthesis gas. Detailed characterization of these materials, including state of the art XPS measurements obtained via sample transfer between reaction cell and spectrometer chamber, provided clear insight into the factors that determine catalytic performance. The principal Rh species detected by post reaction XPS was Rh 0, its relative content decreasing in the order Rh/CZ(100%)>Rh/ACZ(72%)>Rh/γ-Al 2O 3(55%). The catalytic activity followed the same order, demonstrating unambiguously that Rh 0 is indeed the key active site. Moreover, the presence of CZ in the support served to maintain Rh in the metallic state and minimize carbon deposition under reaction conditions. Carbon deposition, low in all cases, increased in the order Rh/CZ < Rh/ACZ < Rh/γ-Al 2O 3 consistent with a bi-functional reaction mechanism whereby backspillover of labile lattice O 2− contributes to carbon oxidation, stabilization of Rh 0 and modification of its surface chemistry; the resulting O vacancies in the support providing centers for dissociative adsorption of CO 2. The lower apparent activation energy observed with CZ-containing samples suggests that CZ is a promising support component for use in low temperature DRM

    ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss

    Get PDF
    Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.Peer reviewe
    corecore