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Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe

autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By

combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome

sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary

cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation

and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified

mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome

editing of znhit3 in zebrafish embryos recapitulate the patients’ cerebellar defects, microcephaly and oedema. These phenotypes are

rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease

through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syn-

drome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed

in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3

in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival

and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a

nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be

the basis for developing therapeutic approaches and for improved understanding of cerebellar development.
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Introduction
PEHO syndrome (progressive encephalopathy with

oedema, hypsarrhythmia, and optic atrophy; MIM

260565) is a rare disorder with distinctive neuroradiologi-

cal and neuropathological findings. The diagnostic criteria

include infantile-onset hypotonia, infantile spasms with

hypsarrhythmia, profound psychomotor retardation, optic

atrophy, and progressive brain atrophy primarily involving

the cerebellum and brainstem (Somer, 1993a; Somer et al.,

1993a). Additional clinical findings include typical facial

dysmorphism (Fig. 1A), oedema of the face and limbs

(Fig. 1B), brisk tendon reflexes in early childhood, abnor-

mal brainstem auditory evoked potentials, slowed nerve

conduction velocity in late childhood, and dysmyelination

observed on MRI (Fig. 1C–G) (Salonen et al., 1991; Somer,

1993a; Somer and Sainio, 1993; Somer et al., 1993a,b).

Head circumference is average at birth, but drops to �2

standard deviations during infancy (Somer, 1993a).

Microcephaly at birth, abnormal gyral formation, predom-

inant spasticity in infancy, reappearance of visual contact

after cessation of infantile spasms, hepato- or splenomegaly

and storage disorder in histological studies argue against

diagnosis of PEHO syndrome (Somer, 1993a). There is

cerebral and extreme cerebellar cortical atrophy (Fig. 1H),

with the inner granule cell layer being either totally absent

or containing only few neurons and the Purkinje

cells showing abnormal dendritic arborization and mis-

alignment (Haltia and Somer, 1993). The optic nerves

show loss of myelinated axons and gliosis, while the retinal

nerve fibre and ganglion cell layers are atrophic (Somer

et al., 1993b).

PEHO syndrome is enriched in the Finnish population

with an estimated incidence of 1:74 000 (Somer, 1993a)

and �30 clinically diagnosed patients. PEHO syndrome is

very rare in other populations with 525 reported patients

(Field et al., 2003; Alfadhel et al., 2011; Caraballo et al.,

2011). Patients with PEHO-like features are more common

and present with many but not all characteristic findings of

PEHO syndrome, e.g. have atypical neuroradiological find-

ings or show no sign of progression (Chitty et al., 1996;

Field et al., 2003; Longman et al., 2003). Recessive disease-

causing variants in the SEPSECS gene involved in seleno-

protein biosynthesis have been described in four Finnish

patients with PEHO-like features (Anttonen et al., 2015),

but the cause for autosomal recessive PEHO syndrome has

remained unknown.

Here we report the identification of a missense loss-of-

function variant in ZNHIT3 as the primary defect under-

lying PEHO syndrome. Using knockdown and genome

editing experiments in zebrafish embryos and knockdown

experiments in mouse cerebellar neurons, we show that

ZNHIT3 is essential for normal cerebellar development.

Materials and methods

Study subjects

The study included 23 Finnish patients with a clinical diagno-
sis of PEHO and 40 Finnish and 47 non-Finnish patients with

1268 | BRAIN 2017: 140; 1267–1279 A.-K. Anttonen et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/140/5/1267/3059331 by Viikki Science Library, U

niversity of H
elsinki user on 12 August 2019



PEHO-like features. In addition, clinical information was
available from three patients with a clinical diagnosis of
PEHO but DNA sample available only from parents. The
study was approved by an Institutional Review Board at the
Helsinki University Hospital and written informed consent was
obtained from all study subjects or their legal guardians ac-
cording to the Declaration of Helsinki prior to drawing per-
ipheral blood for DNA extraction.

Homozygosity mapping and
sequencing

DNA samples of 11 patients were genotyped using the
Illumina HumanHap300-duo single nucleotide polymorphism
(SNP) microarrays (Illumina) containing over 318 000 SNPs.
Illumina Beadstudio v3.1.0 was used to call genotypes and all
samples had 499% call rate. Plink version 1.02 (Purcell et al.,
2007) was used to search for extended tracts of homozygosity
in each sample using a minimum length of 50 SNPs and 400
kb. The coding regions of the six positional candidate genes
(Supplementary Table 1) were Sanger sequenced from genomic
DNA using three patient samples (Patients a3, d3, and n4;
Supplementary Fig. 1). Primers are available upon request.
One patient (Patient a5; Supplementary Fig. 1) was whole-
exome sequenced. The sequencing protocol and sequence
data analysis are described in the Supplementary material.

Morpholino knockdown in zebrafish
embryos

The experimental work was carried out under protocols
approved by the Institutional Animal Care and Use
Committee, Duke University, following standard laboratory
procedures in accordance with the Duke Animal Care and
Use Program. We injected 1 nl (15 ng) of the translation-
blocking morpholino oligonucleotide (MO), znhit3_MO, into
wild-type zebrafish embryos at the 1–2-cell stage and for the
rescue experiments 100 pg of relevant human mRNA. To
evaluate CNS integrity and oedema, injected embryos were
raised until 3 days post-fertilization (dpf); they were scored
for cardiac and/or generalized oedema and subsequently pro-
cessed for CNS analysis through whole-mount staining using
an antibody against acetylated tubulin (T7451, Sigma-Aldrich).
To evaluate differentiated granule cell expression in the cere-
bellum of 5 dpf developing zebrafish larvae, we injected a
NeuroD:GFP reporter line (Drerup and Nechiporuk, 2013).
For more detailed methods, see Supplementary material.

Generation of CRISPR mutant
zebrafish embryos

For the CRISPR (clustered regularly-interspaced short palin-
dromic repeats) experiments, znhit3 guide RNA was generated
as described (Jao et al., 2013). The protocols for generation of
znhit3 guide RNA and F0 CRISPR mutant zebrafish are
described in the Supplementary material. To generate the F1’
compound heterozygous or homozygous mutant znhit3 em-
bryos we intercrossed F0 adult founders. From each of the
produced clutches eight embryos were sacrificed, subjected to
T7 endonuclease I assay and Sanger sequenced to determine

the exact genotype and zygosity. Matings from two pairs
yielded 100% of the eight embryos tested with recessive
events and were subsequently phenotyped to assay the integrity
of the cerebellum as well as the head size (Fig. 3). The MO
and CRISPR phenotypic outcomes were qualitatively and
quantitatively concordant in their impact on cerebellar integ-
rity by counting the embryos with cerebellar abnormalities as
visualized by acetylated tubulin staining and measuring of the
area covered by NeuroD:GFP + cells, respectively.

Expression plasmids and site-directed
mutagenesis

The cDNA clone of human ZNHIT3 was purchased from
imaGenes and cloned into pcDNA3.1 vector (Invitrogen) and
into the haemagglutinin (HA) tag containing pAHC expression
vector, a derivative of the pCIneo expression vector (Promega).
The c.92C4T nucleotide change was introduced into the wild-
type construct using the QuickChange Lightning Site-Directed
Mutagenesis Kit (Stratagene) and verified by sequencing.

Cell culture experiments, immuno-
blotting and immunocytochemistry

For measurement of protein stability, HeLa, COS-1 and BHK
cells (from ATCC) were cultured, transfected and exposed to
protein synthesis inhibitor cycloheximide or proteasome inhibi-
tor MG132 and analysed by immunoblotting as described in
detail in the Supplementary material. Cerebellar granule cell
cultures were prepared from postnatal Day 5 mice (C57BL)
and cultured for 2 days in vitro, as described previously
(Giulian and Baker, 1986; Lehtinen et al., 2009). HeLa,
BHK and mouse cerebellar granule cells were processed for
immunocytochemical confocal imaging analyses using Zeiss
LSM 700 or 780 microscope as described in detail in the
Supplementary material. Primary antibodies used were a
rabbit antibody to human ZNHIT3 (A301-214A, Bethyl
Laboratories; 1:200), a goat antibody to human lamin B1
(Santa Cruz Biotechnology; 1:1000) and a mouse antibody
to tubulin, beta III isoform (Chemicon; 1:200). Image process-
ing was done with ImageJ and Adobe Photoshop CS4
software.

Immunohistochemistry

Immunohistochemistry was done on sagittal paraffin sections
of embryonic Day 16.5, postnatal Day 3, and postnatal Day
10 or 21 mouse brain (see Supplementary material for details).
Primary antibodies used were a rabbit antibody to ZNHIT3
(A301-231A; Bethyl Laboratories, 1:600), a mouse antibody to
CDC47 (Thermo Scientific; 1:100), a mouse antibody to glial
fibrillary acidic protein (GFAP) (M076101-2, Dako, Agilent
Technologies, 1:150) and a mouse antibody to calbindin
(Swant, 1:1000). The slides were analysed with Zeiss
Axioplan 2 epifluorescence (Fig. 5A) or with Zeiss LSM 780
Confocal microscope (Fig. 5B) and with AxioVision 3.1 or
Zen 2010 software, respectively. Image processing was done
with ImageJ and Adobe Photoshop software.
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RNAi plasmid design

Mammalian hairpin (hp) RNA interference (RNAi) constructs
were designed as described (Gaudilliere et al., 2002).
The hpRNA targeting sequences are: GAAGAAGACAGAGT
GTCTCTG (Znhit3) and TACGCGCATAAGATTAGGGTA
(Scramble) (Christensen et al., 2011). Znhit3 rescue was gen-
erated by creating five silent base-pair mutations into the wild-
type cDNA encoding ZNHIT3 using the QuikChange Site-
Directed Mutagenesis Kit (Stratagene) as follows: GAGGAT
AGAGTCTCGCTC.

Survival assay

Cerebellar granule neurons prepared from postnatal Day 5
mouse cerebella were transfected with the hpRNA constructs
as described (Lehtinen et al., 2006). Briefly, cultures were
transfected at postnatal Day 5 + 2 days in vitro (DIV) by
the calcium phosphate method. Seventy-two hours later, cells
were subjected to immunocytochemistry using an antibody to
green fluorescent protein (GFP) (Abcam), and neuronal sur-
vival was assessed in a blinded manner in transfected GFP-
positive neurons based on the integrity of neuronal processes
and nuclear morphology (Hoechst) (Lehtinen et al., 2006).

Cerebellar slice cultures

Cerebella were harvested from postnatal Day 8 C57/Bl6 mouse
pups, immersed in plasmid DNA (2 mg/m) in complete Hanks
Balanced Salt Solution (HBSS), transferred to a CUY520-P5
Platinum block Petridish Electrode (Protech International),
and electroporated with an ECM 830 square wave electro-
porator (BTX Genetronics) at 80 V, five pulses, 50 ms pulse,
and 500 ms interval. Electroporated cerebella were embedded
in 3% low melting point agarose in HBSS, and 250 mm cor-
onal or sagittal cerebellar slices were prepared using a
VT1000S Vibratome (Leica Microsystems). Slices were trans-
ferred to Millicell

�
tissue culture inserts (Millipore) and cul-

tured in Eagle’s Basal Medium, with 1 mM L-glutamine, 0.5%
glucose, and ITS (Sigma) and 50 U/ml penicillin and strepto-
mycin and analysed at 48 or 72 h post-plating. The location of
GFP-positive staining cerebellar granule neurons was quanti-
fied with respect to location of the Purkinje cell layer and
interpreted as migration as described (Yang et al., 2012).
Slices were imaged using BioGBS Zeiss 510 and analysed
using ImageJ and Amaxa softwares.

Statistical analyses

Zebrafish embryos were analysed in a blinded manner. The
Pearson �2 test was used for cerebellar integrity and oedema
assays. In evaluating the area of the optic tectum and the area
covered by granule cells in NeuroD:GFP larvae, differences of
means by condition was calculated using a two-tailed Student’s
t-test. Statistical significance was determined when P5 0.05.

For cerebellar granule cell survival �150 cells were counted
per treatment condition, per experiment, in a blinded manner
and analysed for statistical significance by ANOVA followed
by Fisher’s Protected Least Significant Difference post hoc test.
Statistical analyses represent a minimum of three separate ex-
periments with P50.05 considered as significant. The

location of GFP-positive cerebellar granule neurons was ana-
lysed in a double-blind manner and quantified using unpaired
t-test.

Results

Identification of the ZNHIT3 gene
underlying PEHO syndrome

Homozygosity mapping in 11 Finnish patients with PEHO

syndrome (Supplementary Fig. 1) defined a 433-kb region

on chromosome 17q12 (data not shown); none of 427

genotyped Finnish control individuals were homozygous.

Sanger sequencing of coding regions of the six positional

candidate genes in three patients (Patients a3, d3, and n3;

Supplementary Fig. 1) revealed a homozygous rare missense

variant, c.92C4T (p.Ser31Leu), in ZNHIT3 (MIM

604500; NM_004773.3), which encodes the zinc finger

HIT domain-containing protein 3 (ZNHIT3). Other genes

were excluded based on high population frequencies of the

identified variants (Supplementary Table 1). Whole-exome

sequencing in one patient with PEHO (Patient a5;

Supplementary material) identified the c.92C4T variant

as the only homozygous protein coding variant in the six

positional candidate genes (Supplementary Table 1).

Of the remaining 19 Finnish patients with clinically diag-

nosed PEHO syndrome, 18 were homozygous for

c.92C4T. The one patient with no mutations in

ZNHIT3 had progressive cerebellar atrophy, determined

by CT, and hypoplastic (as opposed to atrophic) optic

discs. Two of 40 Finnish patients with PEHO-like features

were homozygous for c.92C4T. One of these patients

lacked a history of infantile spasms and hypsarrhythmia,

though he otherwise fulfilled the clinical criteria. The

second patient initially had neuroimaging findings atypical

for PEHO syndrome, but these were later attributed to use

of vigabatrin, an anti-epileptic drug that inhibits break-

down of GABA (Walker and Kälviäinen, 2011). None of

the 47 non-Finnish PEHO-like patients had mutations in

ZNHIT3.
The c.92C4T variant segregated in an autosomal reces-

sive manner in affected families. The carrier frequency in

the entire Exome Aggregation Consortium database was

0.07% (40/58 895 individuals) and 0.92% (31/3350)

among Finnish individuals, with no homozygous individ-

uals detected. The 155-amino acid ZNHIT3 polypeptide

(NP_004764.1) contains a N-terminal (amino acids 11–

42) cysteine-rich histidine triad motif -type zinc finger (zf-

HIT) domain (Fig. 2) found in nuclear proteins implicated

in transcription regulation and chromatin remodelling

(Iwahashi et al., 2002; He et al., 2007; Cuadrado et al.,

2010). It also contains a conserved LxxLL motif (Fig. 2A)

present in many nuclear receptor coregulators (Heery et al.,

1997). The p.Ser31Leu substitution affects a highly con-

served residue of the zf-HIT domain located next to one

of the zinc-coordinating cysteines (Fig. 2B), and based on
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three of four in silico predictions (Supplementary Table 1),

is deleterious. Collectively, these genetic data strongly sug-

gest that c.92C4T is the mutation causing PEHO

syndrome.

Knockdown and genome editing of
znhit3 in zebrafish

To get further biological causal evidence and to establish

the direction of effect of the p.Ser31Leu substitution, we

developed in vivo surrogate zebrafish models. A BLASTp

query of the zebrafish protein against the human proteome

identified the human ZNHIT3 as the major hit. RNA in

situ hybridization of the single znhit3 orthologue (66%

similarity; 49% identity) showed widespread expression

across the head of 5 dpf larvae (Supplementary Fig. 2).

Suppression of znhit3 by antisense morpholino injection

induced dosage-sensitive defects in a number of organs rele-

vant to human pathology. These included microcephaly

(through the surrogate measurement of the area of the

optic tectum) (Schulte et al., 2014; Borck et al., 2015)

and structural cerebellar defects (Fig. 3) as well as pericar-

diac oedema (Supplementary Fig. 3). These phenotypes

were specific. First, we were able to rescue all the above

pathologies by co-injecting embryos with wild-type human

ZNHIT3 capped mRNA (P = 0.002 for the optic tectum

Figure 1 Phenotypic features of PEHO syndrome. (A) Facial features of a patient at 1 year 2 months. Note the narrow forehead,

epicanthic folds, outward turning ear lobules, and open mouth. (B) The hands show oedema and the fingers are tapering. (C) Axial MRI at the age

of 5 months shows marked cerebellar atrophy. The supratentorial CSF spaces are normal. (D) At 5 months the myelination is almost normal for

the age (arrows). (E) At 1 year of age, cerebellar atrophy has progressed and is now severe and (F) myelination has proceeded only slightly and is

now markedly abnormal for the age (arrows). (G) In midline sagittal MRI at 1 year of age pons (arrowhead) is also atrophic, but not to the same

degree as the cerebellum (arrow). The supratentorial brain shows atrophy. (H) Atrophic cerebellar cortex from a PEHO patient (3 years 4

months). Haematoxylin and eosin-stained paraffin section showing an atrophic folium with clearly thinned molecular layer, almost total loss of

Purkinje cells, and prominent atrophy of the granule cell layer. The remaining Purkinje cells are pyknotic and disaligned (arrowhead). Original

magnification � 100; Scale bar = 100 mm. Consent to publish facial images of the subject was obtained.
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assay, P50.0001 for the acetylated-tubulin-visualized

cerebellum integrity assay and P = 0.0003 for the oedema

assay; Fig. 3 and Supplementary Fig. 3). Second, CRISPR-

induced deletions in both F0 and F1’ 3 dpf zebrafish em-

bryos (generated through an intercross among F0 znhit3

mutant founders) reproduced consistently the morphant

phenotypes in both qualitative and quantitative measures

(Fig. 3 and Supplementary Fig. 4).

Testing for rescue of microcephaly, cerebellar integrity

and pericardiac oedema showed, consistently, that

p.Ser31Leu mutant human mRNA yielded embryos indis-

tinguishable from morphants, suggesting that the

p.Ser31Leu represents a loss-of-function allele (P = 0.72

from MO and P5 0.0001 from MO + wild-type for the

optic tectum assay; P = 0.25 from MO and P = 0.0006

from MO + wild-type for the acetylated-tubulin-visualized

cerebellum integrity assay; and P = 1 from MO and

P = 0.0001 from MO + wild-type for the oedema assay;

Fig. 3 and Supplementary Fig. 3). Overexpression of either

the wild-type or p.Ser31Leu bearing human ZNHIT3

mRNA did not induce any significant defects (Fig. 3 and

Supplementary Fig. 3).

To investigate the cerebellar phenotype we used zebrafish

embryos expressing stably NeuroD:GFP, a marker for dif-

ferentiated granule cells. Both morphants and CRISPR mu-

tants had significant cerebellar defects, with depletion of the

neuronal axons across the midline as well as the caudolat-

eral portion of the cerebellum (P5 0.0001 for both mor-

phant as well as F0 CRISPR mutant compared to control

larvae; Fig. 3 and Supplementary Fig. 5). This aberrant

granule cell phenotype could be rescued reproducibly by

co-injection of znhit3_MO with ZNHIT3 wild-type

(P50.0001) but not with mutant human mRNA

(P = 0.45; Supplementary Fig. 5).

Characterization of the ZNHIT3
protein

The effect of the p.Ser31Leu mutation on the putative tran-

scriptional co-regulatory function of ZNHIT3 (Iwahashi

et al., 2002; Koppen et al., 2009) was assessed in a series

of co-transfection-based reporter gene assays. Under condi-

tions in which TRAP220 (TR-associated protein 220)

(Yuan et al., 1998) clearly enhanced the activity of

thyroid hormone receptor-dependent transcription,

ZNHIT3 enhanced activity only slightly with no further

modulatory effect of p.Ser31Leu (Supplementary Fig. 6A

and B). In contrast, on HNF4�-dependent transcription

(Supplementary Fig. 6C) and in a transcription repression

assay ZNHIT3 repressed transcription, and the p.Ser31Leu

substitution repressed transcription further (Supplementary

Fig. 6D). Using coimmunoprecipitation we showed that the

p.Ser31Leu mutation does not compromise the reported

interaction (Bizarro et al., 2014; Rothe et al., 2014) of

ZNHIT3 with NUFIP1 (Supplementary Fig. 7).

As immunoblotting of the coimmunoprecipitation and re-

porter gene assay samples repeatedly showed lower protein

levels for the p.Ser31Leu variant than wild-type ZNHIT3

(Supplementary Fig. 6C and D), we analysed their stability

in intact cells. First, inhibition of protein synthesis with

cycloheximide showed that endogenous ZNHIT3 in HeLa

cells is short-lived (half-life 52 h) (Fig. 4A). The cyclohex-

imide experiments of COS-1 cells (displaying low endogen-

ous level of ZNHIT3) transfected with ZNHIT3 expression

vectors demonstrated that the half-life of the p.Ser31Leu

mutant protein was approximately one-fourth of that of

wild-type (Fig. 4B). Blocking of the proteasome function

by MG132 abolished the difference between wild-type

and p.Ser31Leu protein (Fig. 4C), suggesting that the

Figure 2 The PEHO mutation affects a highly conserved amino acid in the functional domain of ZNHIT3. (A) A schematic picture

illustrating the secondary structure of the human ZNHIT3: beta strands, aa 19–21 and 28–31; alpha helix, aa 32–41; LxxLL, aa 101–105. The

arrow shows the location of Ser31. (B) Multiple alignment of zf-HIT domain of ZNHIT3. Asterisks and colons indicate fully conserved and highly

conserved residues, respectively. The residues coordinating zinc atoms are shown with red background and Ser31 with the yellow background.
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Figure 3 Knockdown and genome editing of znhit3 in zebrafish causes cerebellar defects and microcephaly. (A) Dorsal view of

the brains of 3 dpf zebrafish embryos stained with an antibody to acetylated tubulin. Control embryos and embryos injected with a znhit3

morpholino oligonucleotide (znhit3_MO), znhit3_MO with ZNHIT3 wild-type human mRNA (znhit3_MO + ZNHIT3_WT), znhit3_MO with

ZNHIT3 p.Ser31Leu mutant human mRNA (znhit3_MO + ZNHIT3_p.S31L) and F1’ embryos generated through an intercross of F0 znhit3 CRISPR

mutants (znhit3_ F1’_CRISPR) are shown. In the control brain, the area of the optic tectum (OT) is highlighted with a black dashed eclipse and the

area of the cerebellum (CB) with a white dashed rectangle. Enlarged images of the cerebellum are shown to the right of respective whole brain

images. In both the morphant embryos injected with znhit3_MO, and the F1’ CRISPR mutant embryos there is a reduction of the size of the optic

tectum, as well as marked degeneration of the axons forming the midline of the cerebellum, a finding that is consistent with cerebellar atrophy. In

the morphant model, both phenotypes were rescued by co-injection of znhit3_MO with ZNHIT3 wild-type human mRNA but not with ZNHIT3

p.Ser31Leu mutant human mRNA, suggesting that this variant represents a loss-of-function allele. (B) Quantification of the optic tectum area in

zebrafish larvae at 3 dpf (control n = 61, znhit3_MO n = 45, znhit3_MO + ZNHIT3_WT n = 44, znhit3_MO + ZNHIT3_p.S31L n = 42, ZNHIT3_WT

n = 37, ZNHIT3_p.S31L n = 53, znhit3_F1’_CRISPR n = 49). Error bars represent standard error of the mean (SEM). (C) Quantification of

embryos showing cerebellar defects (control n = 103, znhit3_MO n = 86, znhit3_MO + ZNHIT3_WT n = 94, znhit3_MO + ZNHIT3_p.S31L n = 85,

ZNHIT3_WT n = 93, ZNHIT3_p.S31L n = 109, znhit3_F1’_CRISPR n = 108). **P5 0.01; ***P5 0.001. WT = wild-type.
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lower steady-state level of the mutant is due to its more

rapid proteasomal degradation. Further, both endogenous

ZNHIT3 in HeLa cells (Fig. 4D) and wild-type ZNHIT3 in

BHK cells (Fig. 4E) displayed punctate staining both in

cytosol and nucleus. The p.Ser31Leu mutation did not

result in altered subcellular localization of ZNHIT3, but

the mutant protein was prone to form large nuclear aggre-

gates (Fig. 4E). Taken together, these data complement the

results from zebrafish experiments and suggest that the

mechanism for the loss of function is impaired folding of

ZNHIT3 rendering it more prone than the wild-type pro-

tein to aggregation and degradation.

Neuronal expression of ZNHIT3

As the most striking neuropathology in PEHO syndrome is

observed in the cerebellum, characterized by remarkable

loss of granule cells and deformed Purkinje cells, and as

findings in zebrafish embryos indicated granule cell defects,

we analysed the ZNHIT3 protein expression in mouse

cerebellum. The expression of ZNHIT3 was evident in pro-

liferating foetal granule cell precursors at embryonic Day

16.5, in proliferating and post-mitotic granule cells at post-

natal Days 3 and 10 (Fig. 5A) and was still visible, though

less prominent, in mature postnatal Day 21 cerebellum

(Fig. 5B). However, expression of ZNHIT3 in cerebellar

Purkinje cells was strong at postnatal Days 10 and 21.

Expression analysis of ZNHIT3 in Bergmann glia, which

is important for the migration of the cerebellar granule cells

(Rakic, 1971), remained inconclusive, since co-localization

of ZNHIT3 with the glial marker GFAP was only partial

(Fig. 5B and inset). In cultured postnatal cerebellar granule

cells the expression of ZNHIT3 was strong and mainly

nuclear (Fig. 5C), consistent with findings in cell lines.

Knockdown of Znhit3 by RNAi in
cerebellar granule cells

To investigate the impact of ZNHIT3 deficiency on cerebellar

pathology, we first used a plasmid-based method of RNAi to

Figure 4 Compromised stability of p.Ser31Leu mutant ZNHIT3. (A) HeLa cells were exposed to cycloheximide (CHX), endogenous

ZNHIT3 was detected by immunoblotting and its half-life plotted. (B) Protein stability measurements in COS-1 cells ectopically expressing wild-

type (WT) ZNHIT3 or p.Ser31Leu mutant show that the substitution severely compromises the stability of ZNHIT3. (C) Effect of proteasome

inhibitor MG132 on ZNHIT3 levels in COS-1 cells. (D) Subcellular distribution of endogenous ZNHIT3 (green) in HeLa cells as assessed by

immunofluorescence staining and confocal microscopy. An antibody to lamin B1 (red) was used to label nuclear membranes. (E) BHK cells

transiently transfected with wild-type or p.Ser31Leu ZNHIT3 and treated with cycloheximide for 2.5 h. The cells were stained with an antibody to

ZNHIT3 (green) and with Hoechst (blue). Scale bars = 10 mm.
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Figure 5 Endogenous ZNHIT3 expression in the developing mouse cerebellum and cultured cerebellar granule cells.

(A) Developing cerebellar cortex at embryonic Day (E)16.5, postnatal Day (P)3 and P10 were stained with an antibody to ZNHIT3 (green). The

section at E16.5 was also stained with an antibody to CDC47 (red), a marker for mitotic cells. An arrowhead shows foetal precursor cells at

E16.5. Pictures were captured with an epifluorescence microscope. Scale bars = 50 mm. (B) Mouse cerebellar cortex at P10 and P21 stained with

an antibody to ZNHIT3 (green) and to calbindin or GFAP (red), markers for Purkinje and astroglial cells, respectively. Pictures are average

projections of stacks of four consecutive confocal microscope images. An insert shows a reconstructed orthogonal projection of the stack. Scale

bars = 50 mm. (C) Endogenous ZNHIT3 expression in cultured P5 mouse cerebellar granule cells. The cells were stained with antibodies to

ZNHIT3 (green) and tubulin, beta III isoform (red), a marker for neurons, and with Hoechst (blue). Scale bars = 20 mm.
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reduce the expression of mouse Znhit3 in 293T cells (Fig. 6A)

and in cultured primary mouse cerebellar granule neurons

(Fig. 6B). Knockdown of Znhit3 sensitized the neurons to

death, and the specificity of the effect was demonstrated by

co-expressing a ‘rescue’ form of Znhit3 (Zn-HIT3R) resistant

to Znhit3 RNAi (Fig. 6A and B). Further, knocking down

Znhit3 expression ex vivo in cerebella harvested from post-

natal Day 8 mouse pups resulted in reduced numbers of

ZNHIT3-deficient cerebellar granule neurons located at

increased distances away from the external granule cell layer

(Fig. 6C). Reduced numbers of neurons were found within 50

mm, 100 mm, and 150 mm of the calbindin-positive Purkinje

cell layer compared to control (Fig. 6D and E). These data are

consistent with our observation of ectopic granule neurons in

cerebella of PEHO syndrome patients (Fig. 1H). Taken to-

gether, these data show that compromised neuronal survival

and impaired migration contribute to the cerebellar pathology

associated with defective ZNHIT3 function.

Discussion
Here we describe that loss-of-function of ZNHIT3, caused

by homozygosity for the p.Ser31Leu variant, underlies

autosomal recessive PEHO syndrome. The observed carrier

frequency (�1%) of p.Ser31Leu in the Finnish population

is in line with the estimated incidence of PEHO syndrome

(Somer, 1993a). Definition of the clinical characteristics in

a molecularly uniform patient cohort (Table 1) confirmed

the validity of the previously established clinical criteria

(Somer, 1993a) with the exception of infantile spasms

and hypsarrhythmia, which are not present in all PEHO

patients. We thus suggest that infantile spasms may be

removed as an essential clinical criterion for PEHO syn-

drome. The patients presented uniform neuroradiological

findings with progressive cerebellar atrophy and dysmyeli-

nation as essential diagnostic criteria. The clinical presenta-

tion among affected siblings was very similar.

Recently, five other genes have been implicated in pa-

tients with PEHO-like features (Gawlinski et al., 2016;

Langlois et al., 2016; Nahorski et al., 2016). A homozy-

gous frame-shift deletion in CCDC88A, which encodes an

actin binding protein, with an essential role in cellular mi-

gration and early development of mouse brain, was re-

ported in three consanguineous individuals (Nahorski

et al., 2016). However, the presence of microcephaly at

birth as well as polymicrogyria and pachygyria on MRI

Figure 6 ZNHIT3 deficiency leads to death and impaired

migration of mouse cerebellar granule neurons. (A) Left:

Lysates of 293T cells transfected with an expression vector

encoding haemagglutinin (HA) -tagged mouse ZNHIT3 (HA-Znhit3)

or control CMV plasmid together with the Znhit3 hpRNA (U6

Znhit3), control U6, or U6 Scramble plasmids, immunoblotted with

the antibodies to HA and AKT. Right: Lysates of 293T cells trans-

fected with mouse HA-Znhit3, Rescue HA-Znhit3 (R), or control

CMV plasmid together with the Znhit3 hpRNA or control U6

plasmid, immunoblotted (as in left). (B) Left: Percentage of cell death

of GFP-positive mouse cerebellar granule neurons transfected with

the Znhit3 hpRNA, control U6, or control Scramble plasmids to-

gether with the GFP expression plasmid after 72 h in culture, rep-

resented as mean � SEM (U6 control plasmid: 14.3 � 2.8; Znhit3

hpRNA: 38.7 � 4.7; Scramble: 19.4 � 3.1; **P5 0.01; n = 3). Right:

Neuronal death (as in left) of cells transfected with the Znhit3

hpRNA and wild-type HA-Znhit3, Rescue HA-Znhit3 (R), or control

CMV plasmids (HA-Znhit3 + Znhit3 hpRNA: 33.737 � 2.697;

Rescue HA-Znhit3 (R) + Znhit3 hpRNA: 14.15 � 3.282; CMV +

Znhit3 hpRNA: 28.553 � 1.86; *P5 0.05; **P5 0.01; n = 3). (C) Ex

vivo cerebellar slice cultures injected with control Scramble or

Znhit3 hpRNA and stained with antibodies to GFP (green) and cal-

bindin (magenta) showing fewer numbers of GFP-positive targeted

cells located past the calbindin-positive stained Purkinje cell layer in

Znhit3 injected compared to Scramble control. Scale bar = 40 mm.

(D) Quantification of GFP-positive targeted cells shown in C

Figure 6 Continued

located 150 mm past Purkinje cell layer (Znhit3 hpRNA: 57.0 � 3.0,

Scramble: 104.3 � 10.3; Mann-Whitney; *P5 0.05; n = 3). (E)

Quantification of GFP-positive targeted cell location shown in C.

Cell counts per fixed area (250 mm� 100 mm) are shown at 50 mm

(Znhit3 hpRNA: 12.6 � 1.0, Scramble: 19 � 0.85) and at 100 mm

(Znhit3 hpRNA: 5.9 � 0.7, Scramble: 12.7 � 1.2; Mann-Whitney;
**P5 0.01; n = 3) past the calbindin-positive staining Purkinje cell

layer.
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argue against the diagnosis of PEHO syndrome in these

patients. A dominant de novo missense variant in the

motor domain of the KIF1A motor protein, involved in

the anterograde transport of synaptic-vesicle precursors

along axons (Riviere et al., 2011), was reported in one

patient (Langlois et al., 2016). Based on the MRI figure

in the paper, myelination in this patient seemed to be less

severely compromised than is typical for Finnish patients

with PEHO syndrome, suggesting that the patient does not

have PEHO syndrome. Indeed, in our cohort of Finnish

PEHO-like patients we have identified one patient with a

de novo KIF1A mutation (Lehesjoki, personal communica-

tion). Finally, identification of de novo mutations both in

GNAO1 and in HESX1, and in CDKL5 in patients with

PEHO-like phenotypes led to the suggestion that PEHO

syndrome may represent a severe end of the spectrum of

the early-onset encephalopathies (Gawlinski et al., 2016).

Loss of znhit3 in zebrafish caused defective cerebellar

development, which manifested as aberrant granule cells

and misaligned parallel fibres in the cerebellar midline

and caudolateral cerebellar portion. These findings further

highlight the granule cells as the cerebellar cell type pre-

dominantly affected in ZNHIT3 deficiency. Since the first

neuropathological evaluation of PEHO patients (Haltia and

Somer, 1993), it has been speculated that the almost total

loss of inner granule cell layer could be due to granule cell

death prior to or during migration (Somer, 1993b). Similar

defects in the migration and survival of granule cells were

further recapitulated through preliminary experiments in

the mouse and zebrafish we report herein. To which

extent increased granule cell death and impaired migration

contribute to the phenotype remains to be explored

through additional in vivo studies. Towards this, the

generation of a stable mutant znhit3 line is necessary in

order to study the specific disease pathomechanisms, as

transient knockdown systems and mosaic F0 animals are

likely to display weaker phenotypes compared to null

models, as exemplified by the phenotypic severity of the

F1’ animals compared to the milder effects of the MO

and the CRISPR editing. Nevertheless, the fact that all

three organisms, human, mouse and zebrafish, display simi-

lar cellular and organismal defects at different evolutionary

stages, suggests a critical and conserved molecular function

for ZNHIT3 in cerebellum and establishes compromised

ZNHIT3 function as the causative determinant in PEHO

pathology.

ZNHIT3 (previously called TRIP3, TR interacting pro-

tein 3) was first reported to interact with rat TR beta

(TRb1) in the presence of thyroid hormone (Lee et al.,

1995) and with retinoid X receptor (RXR) in a 9-cis-retin-

oic acid-responsive manner (Lee et al., 1995). However, the

functional consequences of these interactions were not

tested. Later, ZNHIT3 was reported to co-regulate the ac-

tivity of hepatocyte nuclear factor 4-alpha (HNF4�)

(Iwahashi et al., 2002) and that of peroxisome prolifer-

ator-activated receptor gamma (PPAR�) (Koppen et al.,

2009). Even though our in vitro reporter gene assays did

not confirm the suggested transcriptional co-regulatory

function of ZNHIT3, it is possible that the effects of

mutated ZNHIT3 would be, at least in part, mediated

through perturbation in transcriptional regulation during

periods critical for cerebellar development. It is interesting

to note the similarity of the cerebellar changes between

PEHO syndrome patients (Haltia and Somer, 1993) and

thyroid hormone deficient or thyroid hormone receptor

gene targeted rodents (Yuan et al., 1998; Hashimoto

Table 1 Occurrence of clinical features in PEHO patients with the p.Ser31Leu mutation in ZNHIT3

Main feature More detailed description n/na Percentage

Hypotonia Infantile, usually neonatal 26/26 100

Convulsive disorder 27/27 100

Infantile spasms with hypsarrhythmia 24/27 89

Age of onset, infantile spasms: 2–10 months 22/24

Initial seizure type other than infantile spasms 4/27 15

Profound motor and intellectual disability 27/27 100

Complete absence of speech 25/27 93

Absence or early loss of visual fixation 27/27 100

Atrophy of optic discs 19/24 79

ERG normal 18/18 100

VEP abnormal 18/21 86

Progressiveb brain atrophy 24/24 100

Predominantly cerebellum and brain stem 24/24 100

Dysmyelination on MRI 16/16 100

Oedema Limbs 21/28 75

Typical dysmorphic features 23/24 96

Brisk tendon reflexes At early stage; later, no reflexes 25/27 93

aIncludes three patients without confirmed mutation status in the patient sample, but detected heterozygous carrier status for p.Ser31Leu in parent samples.
bProgressive in patients with multiple CT/MRI scans.
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et al., 2001; Horn and Heuer, 2010; Portella et al., 2010;

Fauquier et al., 2011). A dominant-negative mutation in

the gene encoding the TR�1 receptor has been shown to

primarily alter the differentiation of Purkinje cells and

Bergman glia leading to secondary impairment of migration

and terminal differentiation of granule cell precursors

(Fauquier et al., 2014). Our data on ZNHIT3 being ex-

pressed not only in Purkinje cells, but also in proliferating

and mature granule neurons imply that ZNHIT3 has spe-

cific functions also in granule neurons. Recent reports link-

ing ZNHIT3 to small nucleolar ribonucleoprotein particle

assembly and thus possibly to pre-ribosomal RNA process-

ing via its interaction with nuclear fragile X mental retard-

ation protein interacting protein 1 (NUFIP1) (Bardoni

et al., 2003; Rothe et al., 2014) imply that ZNHIT3 may

have roles beyond transcriptional regulation. However,

while we were able to confirm the interaction of

ZNHIT3 with NUFIP1, the p.Ser31Leu substitution did

not influence this interaction.

The establishment of the nuclear functions of ZNHIT3

will be a next important step in understanding the patho-

mechanism of PEHO syndrome with focus on periods crit-

ical for proliferation, migration and maturation of

cerebellar granule cells. It will also be intriguing to ask

whether some of the genes known to phenocopy aspects

of the core PEHO pathology, might also be either regulated

by ZNHIT3 or partake in similar signalling cascades. At

present, ZNHIT3 is the only nuclear factor implicated in

this disorder. Identification of the remaining PEHO-like

causing proteins and determining whether some/all of

these proteins are involved in the same core mechanisms

as ZNHIT3 thus has the possibility, not only to inform the

molecular aetiology of a broader group of disorders but

also to unravel key mechanisms required for normal cere-

bellar and cerebral development.
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Walker SD, Kälviäinen R. Non-vision adverse events with vigabatrin

therapy. Acta neurologica Scandinavica Supplementum 2011: 72–
82.

Yang YJ, Baltus AE, Mathew RS, Murphy EA, Evrony GD, Gonzalez

DM, et al. Microcephaly gene links trithorax and REST/NRSF to

control neural stem cell proliferation and differentiation. Cell 2012;
151: 1097–112.

Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG. The TRAP220

component of a thyroid hormone receptor- associated protein

(TRAP) coactivator complex interacts directly with nuclear receptors
in a ligand-dependent fashion. Proc Natl Acad Sci USA 1998; 95:

7939–44.

ZNHIT3 is defective in PEHO syndrome BRAIN 2017: 140; 1267–1279 | 1279

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/article-abstract/140/5/1267/3059331 by Viikki Science Library, U

niversity of H
elsinki user on 12 August 2019


