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ABSTRACT 

 

 

The progressive myoclonic epilepsies (PMEs) are a clinically and etiologically 

heterogeneous group of symptomatic epilepsies characterized by myoclonus, tonic-clonic 

seizures, psychomotor regression and ataxia. Different disorders have been classified as 

PMEs. Of these, the group of neuronal ceroid lipofuscinoses (NCLs) comprise an entity 

that has onset in childhood, being the most common cause of neurodegeneration in 

children. The primary aim of this thesis was to dissect the molecular genetic background 

of patients with childhood onset PME by studying candidate genes and attempting to 

identify novel PME-associated genes. Another specific aim was to study the primary 

protein properties of the most recently identified member of the NCL-causing proteins, 

MFSD8.  

To dissect the genetic background of a cohort of Turkish patients with childhood onset 

PME, a screen of the NCL-associated genes PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, 

CLN8 and CTSD was performed. Altogether 49 novel mutations were identified, which 

together with 56 mutations found by collaborators raised the total number of known 

NCL mutations to 364.  

Fourteen of the novel mutations affect the recently identified MFSD8 gene, which had 

originally been identified in a subset of mainly Turkish patients as the underlying cause of 

CLN7 disease. To investigate the distribution of MFSD8 defects, a total of 211 patients of 

different ethnic origins were evaluated for mutations in the gene. Altogether 45 patients 

from nine different countries were provided with a CLN7 molecular diagnosis, denoting 

the wide geographical occurrence of MFSD8 defects. The mutations are private with only 

one having been established by a founder-effect in the Roma population from the former 

Czechoslovakia. All mutations identified except one are associated with the typical clinical 

picture of variant late-infantile NCL. 
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To address the trafficking properties of MFSD8, lysosomal targeting of the protein was 

confirmed in both neuronal and non-neuronal cells. The major determinant for this 

lysosomal sorting was identified to be an N-terminal dileucine based signal (9-EQEPLL-

14), recognized by heterotetrameric AP-1 adaptor proteins, suggesting that MFSD8 takes 

the direct trafficking pathway en route to the lysosomes. Expression studies revealed the 

neurons as the primary cell-type and the hippocampus and cerebellar granular cell layer 

as the predominant regions in which MFSD8 is expressed. 

To identify novel genes associated with childhood onset PME, a single nucleotide 

polymorphism (SNP) genomewide scan was performed in three small families and 18 

sporadic patients followed by homozygosity mapping to determine the candidate loci. 

One of the families and a sporadic patient were positive for mutations in PLA2G6, a gene 

that had previously been shown to cause infantile neuroaxonal dystrophy. Application of 

next-generation sequencing of candidate regions in the remaining two families led to 

identification of a homozygous missense mutation in USP19 for the first and TXNDC6 for 

the second family. Analysis of the 18 sporadic cases mapped the best candidate interval in 

a 1.5 Mb region on chromosome 7q21. Screening of the positional candidate KCTD7 

revealed six mutations in seven unrelated families. All patients with mutations in KCTD7 

were reported to have early onset PME, rapid disease progression leading to dementia 

and no pathologic hallmarks. The identification of KCTD7 mutations in nine patients and 

the clinical delineation of their phenotype establish KCTD7 as a gene for early onset 

PME. 

The findings presented in this thesis denote MFSD8 and KCTD7 as genes commonly 

associated with childhood onset symptomatic epilepsy. The disease-associated role of 

TXNDC6 awaits verification through identification of additional mutations in patients 

with similar phenotypes. Completion of the genetic spectrum underlying childhood onset 

PMEs and understanding of the gene products’ functions will comprise important steps 

towards understanding the underlying pathogenetic mechanisms, and will possibly shed 

light on the general processes of neurodegeneration and nervous system regulation, 

facilitating the diagnosis, classification and possibly treatment of the affected cases.  
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1. INTRODUCTION 
 

 

Major advances have been made in the field of genetics during the past two decades. The 

landmark completion of the Human Genome Project published only a decade ago has 

paved the way to the design and use of revolutionary methods such as genomewide 

genotyping (Lander et al., 2001; Venter et al., 2001). In the 1990s identifying genes for 

Mendelian conditions required the recruitment of large pedigrees with rare and 

preferably highly penetrant Mendelian phenotypes for dominant conditions and large 

collections of informative families in recessively transmitted disorders. This is exemplified  

by the identification of CHRNA4 as the first epilepsy-associated gene in a six-generation 

Australian kindred with 27 affected family members (Steinlein et al., 1995; Phillips et al., 

1995). Today when whole exome/genome sequencing is possible having a large patient 

collection is no longer a prerequisite to a successful genetic study. Instead, as 

demonstrated in a study showing that mitochondrial alanyl-tRNA synthetase (mtAlaRS) 

is defective in hypertrophic mitochondrial cardiomyopathy, a single patient sample could 

suffice for initial gene discovery (Götz et al., 2011). 

The advent of novel technologies has made possible the genotyping of the whole exome 

and/or genome of large sets of individuals producing an incredible amount of data. This 

facilitated the studies addressing the genetic basis of more common diseases and traits 

such as diabetes and height. Nevertheless, the initial confidence that whole genome data 

would speed up our understanding of the genetics of complex traits has not been 

confirmed. Moreover, only a small fraction of the identified genetic variation has been 

linked to function. Our understanding of the meaning of the enormous variation 

identified, how this relates to our history, biology and health remain scarce to date. 

Given these limitations some researchers have proposed that the field of genetics should 

turn its focus again to the study of monogenic and rare phenotypes, utilizing previously 

poorly studied isolated populations, offspring of consanguineous marriages, or even very 

rare phenotypes encountered in very few sporadic cases (Antonarakis and Beckmann, 



INTRODUCTION 14 

2006). Elucidation of the disease-associated mechanisms in such rare disorders could 

contribute in understanding the more complex polygenic disease phenotypes. 

The PMEs, a heterogeneous group of symptomatic generalized epilepsies, comprise an 

example of monogenic disorders for which the genetic and functional backgrounds await 

further elucidation. Among the six clinical entities constituting the PMEs (reviewed in 

Ramachandran et al., 2009) the NCLs comprise the clinical entity that most commonly 

underlies neurodegeneration in children. Despite the description of ten clinical subtypes 

and nine NCL-causing genes (Noskova et al., 2011; reviewed in Mole et al., 2005), a 

significant number of patients exist for whom no genetic or molecular explanation of the 

disease could be provided. By recruiting inbred families and sporadic cases and applying 

next-generation sequencing it should be possible to identify the remaining NCL-

associated genes in the near future. When more players participating in the affected 

pathways of such Mendelian disorders have been identified, the picture of more complex 

non-monogenic symptomatic epilepsies and other neurodegenerative disorders might 

start becoming clearer. 
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2. REVIEW OF THE LITERATURE 
 

 

2.1 From chromosome discovery to the whole genome sequencing era 

The fact that the individuals belonging to a species resemble their progenitors, their 

offspring, and each other suggests that the information dictating this resemblance is 

passed on from generation to generation. The first referrals of heredity date as far back as 

the 5th century BC with Hippocrates commenting on the sacred disease, epilepsy: “Its 

origin is hereditary, like that of other diseases; for if a phlegmatic person be born of a 

phlegmatic, and a bilious of a bilious, and a phthisical of a phthisical, and one having 

spleen disease of another having disease of the spleen, what is it to hinder it from 

happening that where the father and mother were subject to this disease certain of their 

offspring should be so affected too?”. A strong emphasis was placed on inheritance by 

Charles Darwin, who argued that the passing on of the characteristics from the parents to 

the offsping in different combinations provides the genetic variability from which natural 

selection will determine who will thrive and who will perish. It was not, however, until 

1865 that the inheritance of small discrete units was officially established by Gregor 

Mendel, who carried out his breeding experiments in pea plants, inaugurating the field of 

genetics. 

As mentioned in the opening paragraph of the paper presenting the first draft of the 

human genome sequence, major discoveries have been made in the field of genetics in 

roughly each of the four quarters of the 20th century (Lander et al., 2001). Although the 

correct number of human chromosomes was not established until 1956 (Tjio and Levan, 

1956), the first report that the chromosomes and the genes that reside on them comprise 

the units mediating heredity came by Thomas Hunt Morgan (Morgan et al., 1911). In the 

second quarter of the 20th century, the molecular structure of the deoxyribonucleic acid 

(DNA) was resolved to be a double helix consisting of anti-parallel strands (Watson and 

Crick, 1953). Following the discovery of DNA, the code in which the genetic information 

is encrypted was cracked by the discovery of the cellular mechanism of translation used to 
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convey triplets of nucleotides (codons) into proteins (Crick et al., 1961; Nirenberg and 

Matthaei, 1961). In the final quarter of the 20th century, the complete nucleotide 

sequence of the bacteriophage MS2-RNA was determined (Fiers et al., 1976), and the 

following year it became possible to sequence the DNA for the first time, leading to the 

report of the first sequence of the entire genome of another bacteriophage, Φ-X174 

(Sanger et al., 1977).  

The achievements of the past century paved the way to the genome era that we are 

currently experiencing, with the milestone of 1,000 identified disease associated genes 

being reached in 2000 (Antonarakis and McKusick, 2000). Since then, the progress made 

in disease gene identification has been exponential with a number of 2,665 genes causing 

or being associated with Mendelian disorders as of October 1st 2011 

(http://omim.org/statistics/geneMap). The number of disorders with known molecular 

basis has reached 4,455, while the defective gene remains elusive in an additional 1,777 

disorders (http://omim.org/statistics/geneMap).  

 

2.2 The human genome project 

The development of the human genome project (HGP) has comprised a major step 

towards understanding how the genes affect or contribute to human health. The HGP 

was inaugurated in 1990 funded by the U.S. Department of Energy and the National 

Institutes of Health (NIH), as a collaborative 15-year project aiming to provide a high-

quality version of the human sequence and create a complete map of the human genome 

(Lander et al., 2001). Another major goal laid out by the HGP was to map and sequence 

the genome of other organisms such as the laboratory mouse Mus musculus, the fruitfly 

Drosophila melanogaster, and the human gut bacterium Escherichia coli. The first draft of the 

human genome sequence was published in the year 2001 by two independent groups, one 

being the HGP and the second the private biotechnology company Celera Genomics 

(Lander et al., 2001; Venter et al., 2001), while the complete sequence was released three 

years later (The International Human Genome Sequencing Consortium, 2004). Along 
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with the progress made in sequencing of the human DNA, the obtained knowledge has 

become publicly available in several online databases. 

With the human genome being cracked, many of its secrets became known. The human 

“book of life” is composed of 3,280 million nucleotides 

(http://www.ensembl.org/Homo_sapiens/Info/StatsTable?db=core as of April 2011; 

Build 37; GRCh37.p3). Surprisingly about half of the human genome is estimated to be 

composed of various types of repeat sequences, such as transposon-derived repeats, 

inactive retroposed copies of cellular genes, segmental duplications and blocks of tandem 

repeats (Lander et al., 2001). Approximately 48% of the human genome that does not 

comprise repeats is non-coding and intergenic, and was originally termed ‘junk DNA’ 

since no role could be attributed to it. Recent cross-species comparisons have revealed 

strong conservation for these regions, suggesting plausible structural and functional roles 

for them (Birney et al., 2007). Only approximately 2% of the bases encode for proteins, 

with the present consensus predicting the existence of an approximate 20,500 genes. 

These findings highlight the C-value paradox, originally introduced in 1971 (Thomas, 

1971), according to which the complexity of an organism is not directly proportional to its 

genome size. However, this can be explained today by the complex patterns of 

transcriptional regulation, production of alternative transcripts via messenger ribonucleic 

acid (mRNA) splicing, and post-translational modifications observed (Gerstein et al., 

2007). 

Following the completion of the HGP, more consortia have been formed aiming to 

further shed light on the secrets of the human genome and exploit the information found 

in the DNA in order to resolve several diseases that afflict mankind.  

1. The HapMap Project (www.hapmap.org/) was launched in 2003 with the aim to map 

common patterns of DNA variation in individuals from four populations (the Central 

Europeans from Utah (CEU), the Han Chinese from Beijing (CHB), the Japanese from 

Tokyo (JPT), and the Yorubans from Ibadan, Nigeria (YRI)). In this three-phase effort 

3.1 million common single-nucleotide polymorphisms (SNPs) were genotyped across the 

genome (The International HapMap Consortium, 2003, 2005, 2007). The rationale was 

to identify SNPs that are in linkage disequilibrium (LD) with each other, meaning that 
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they are not inherited independently, but rather comprise distinct haplotype blocks. From 

each such non-randomly associated block only one “tag SNP” was selected, with the idea 

that when genotyped it would give information about other adjacent SNPs with which it 

is in LD. In this way one would only need to genotype 200,000-600,000 tag SNPs across 

the genome rather than the whole 10 million SNPs identified today (The International 

HapMap Consortium, 2003). 

2. The Encyclopedia of DNA elements (ENCODE) project 

(http://www.genome.gov/10005107) was created with the aim to provide a biologically 

informative image of the human genome by cataloguing the functional elements of the 

human genome (The ENCODE Consortium 2004).  

3. The 1000 genomes project (www.1000genomes.org) was launched in 2008 as an 

attempt to provide a complete and detailed catalogue of human genetic variation. In this 

three-year effort, the genomes of 1000 individuals from different ethnic backgrounds will 

be sequenced, aiming to discover more than 95% of the common variation occurring in 

the human DNA. Already in the pilot phase of the project 15 million SNPs, 1 million 

short insertions and deletions, as well as 20,000 previously undescribed structural variants 

were reported (The 1000 Genomes Project Consortium, 2010). 

4. An initiative to sequence 10,000 individuals from the United Kingdom (UK10K 

project; http://www.uk10k.org/) was undertaken in order to uncover many rare genetic 

variants that are important in human disease. Towards this the genomes of 4,000 

individuals that have been studied for many diseases and traits over recent years will be 

completely sequenced, while another 6,000 people diagnosed with extreme obesity, 

neurodevelopmental disorders or other conditions will be screened only for the protein-

coding parts of their genomes (http://www.sanger.ac.uk/about/press/2010/100624-

uk10k.html). 
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2.3 Types of sequence variation 

The sequence of any two humans is similar at a rate of 99.9%, differing at approximately 

only one base every 1,000 nucleotides (The International HapMap Consortium, 2005). 

The variation arises from mutations that occur spontaneously either due to mistakes that 

take place during DNA replication, or induced via exposure to chemicals and radiation. 

When these mutations occur in the germline they become transmissible from generation 

to generation and can be used to map specific traits that run in familial cases. The types 

of sequence variation that are usually associated with disease are: 

1. SNPs. These occur via substitutions of single base pairs (bp). The most common 

single nucleotide changes encountered are caused by transitions where a purine is 

exchanged for a purine (A ↔ G) and a pyrimidine for a pyrimidine (T ↔ C). Less 

common are transversions where a purine is exchanged for a pyrimidine and vice 

versa (A/T ↔ G/C). When a SNP falls within the protein coding segments of a 

gene it can result in a silent amino acid (aa) substitution (the amino acid does not 

change), a missense change (the amino acid is exchanged for a new one), or a 

nonsense mutation (a termination codon is introduced usually resulting in a 

premature end to protein synthesis). When the change affects the exon-intron 

junction the splicing pattern of the transcript can be altered via silencing of splice 

enhancers or activation of cryptic splice sites, whereby the mutation is classified as 

splice affecting. 

2. Insertions, deletions and insertion/deletion (indel) changes describe when bases 

are added, removed, or a number of bases is removed only to be substituted by 

another sequence. The occurrence of such changes within the coding region of a 

gene usually results in alterations of the reading frame of the coding sequence, 

called a frameshift. Only a very small fraction of insertions, deletions, or indels 

have no affect on the grouping of the three-base pair formed codons and thus do 

not result in a change of amino acids. 

3. Repeats. There are two major types of repeat sequences in the human genome. 

Interspersed repeats are the first major class of repeats, which are usually 

found as single copies widely distributed across the genome. The interspersed 
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repeats usually derive from transposable elements and comprise the most common 

repeat type encountered in the human genome, constituting 45% of it (Lander et 

al., 2001). The most known transposons resulting in interspersed repeats are the 

long interspersed elements (LINEs) and the short interspersed elements (SINEs). 

The LINEs have an average size of 1 kilobases (kb) (Lander et al. 2001) and 

contain a promoter sequence at the 5’ end which enables them to transcribe 

independently (Deininger et al., 2002). The SINEs on the other hand are shorter 

elements (<500 bp) which cannot be transcribed independently. Almost all SINEs 

are derived from transfer ribonucleic acid (tRNA) genes (Okada, 1991). The most 

abundant human SINEs are the Alu sequences (280 bp long) which are non-

coding, and are flanked by AluI restriction sites. They comprise the only active 

SINE in the human genome and have been implicated in the causality of several 

diseases that occur through Alu-mediated recombination (Lander et al., 2001; 

Cordaux and Batzer, 2009). 

Single sequence repeats (SSRs) or tandem repeats are the second class of 

repeats, and involve the repetition of a k-mer several times. On the basis of the 

repeat unit different SSRs can be recognized. Satellite DNA has repeat unit sizes of 

>100 bp and can span from 100 kb up to 1 megabase (Mb). Most human satellite 

DNA is found in the centromeres. Minisatellite DNA has repeat units of 

approximately 7-100 bp and can range in size from 1-20 kb. Finally short tandem 

repeats (STRs) or microsatellites have repeat units of 1-6 bp and can span regions of 

hundrends of bp (Fan and Chu, 2007; Ellegren, 2000). Based on the number of 

nucleotides being repeated the microsatellites can be mono-, di-, tri-, tetra-, penta- 

or hexanucleotide repeats. Both minisatellite and microsatellite DNA belong to 

the class of sequences called variable number tandem repeats (VNTRs), which is 

characterized by high mutation rates making them vary significantly between 

individuals and thus comprise unique markers for DNA fingerprinting (Jeffreys, 

2005). 

4. Copy number variations (CNVs) arising from large scale deletions, insertions, 

segmental duplications as well as other chromosomal abnormalities can result in 
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variation of the genome. The CNVs are defined as DNA segments that are 1 kb 

or larger in size and present at variable copy numbers in comparison with the 

reference genome (Conrad et al., 2010). In recent years CNVs have emerged as a 

very interesting class of human variation that cannot be overlooked when trying to 

identify the genetic defect underlying a disorder (Redon et al., 2006). For example 

CNVs have been shown to be enriched in patients with epilepsy, schizophrenia, 

autism and several other disorders (Helbig et al., 2009; Stefansson et al., 2008; 

Sebat et al., 2007; Mefford and Eichler, 2009) 

 

2.4 Principles for identification of human disease-associated genes 

Since the identification of phenylalanine hydroxylase as the protein underlying 

phenylketonuria (Jervis, 1953), many advances have taken place in the field of disease 

gene identification. During the past three decades a variety of methods have been 

developed which can be divided into two main categories: position-independent and 

position-dependent strategies. 

 

2.4.1 Position-independent approaches 

The position-independent approaches initially required as a prerequisite some 

information on the likely underlying defect, or the biological pathway affected. Today, 

with the advent of massive parallel sequencing, such information is no longer mandatory. 

The major position-independent approaches used have been: 

1. The candidate gene approach. The basis and at the same time limitation of this 

approach is that it requires some prior knowledge of the biochemical defect 

involved. This prior knowledge can derive from expression array analyses, for 

example, where the gene or protein expression levels are compared between 

affected and healthy individuals (Hoh and Ott, 2004). One disease in which the 

defect was identified using this method was hemophilia A, in which a deficiency in 

the coagulation factor VIII was detected in the blood of patients (Gitschier et al., 
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1984). Alternatively, genes belonging to the same protein family, bearing the same 

protein domains, or belonging to the same pathway can be considered as good 

candidates. 

2. The homologous gene approach. In this approach the rationale is that when a gene is 

identified to be defective in an animal model with a manifesting phenotype and 

disease symptomatology similar to that presented by a group of patients, the 

human ortholog could be considered a good candidate. One example is the 

identification of the genetic defect causing the DFNA15 autosomal dominant form 

of progressive hearing loss (MIM_602459), which was first identified in mice. The 

animals were deaf when both alleles of the POU class 4 homeobox 3 gene (Pou4f3) 

were deleted (Erkman et al., 1996; Xiang et al., 1997). The human homolog 

(POU4F3) naturally became an excellent candidate for DFNA15, and indeed was 

shown to harbor heterozygous deletions in the affected family members screened 

(Vahava et al., 1998). 

3. The whole exome/genome re-sequencing approach. Large-scale sequencing has only 

become available after the dramatic reduction of cost, and the development of the 

high-throughput technology. Despite its enormous potential one drawback of 

next-generation sequencing is the handling of the large volume of data produced. 

Successful applications of next-generation sequencing include the identification of 

the Trithorax-group histone methyltransferase (MLL2) in Kabuki syndrome 

(MIM_147920) (Ng et al., 2010) and of the DnaJ homolog, subfamily C, member 

5 gene (DNAJC5) in autosomal dominant adult-onset NCL (MIM_162350) 

(Noskova et al., 2011). 
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2.4.2 Position-dependent approaches 

The position-dependent approaches do not require any prior knowledge of the molecular 

pathogenesis of the underlying pathway, complex or defect. Thus no assumptions need to 

be made a priori, rather the defect is identified based primarily on its position in the 

genome. The position dependent approaches traditionally follow three steps (Figure 1).  

 

 

Figure 1. Schematic representation of the position-dependent gene identification approach. In the first 

step, the study material where a phenotype segregates with the disease genotype (shown as a red block in 

the pedigree representations) is collected. The non disease-associated chromosomal loci are shown as blue 

blocks. After inspection of the genotypes the chromosomal interval harboring the disease gene is mapped as 

tightly as possible (indicated with a red eclipse). Finally, the genes residing within the critical region are 

screened for mutations. 
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1. Collection of the study material. The first step of all the position-dependent approaches 

relies on the mapping of the critical interval in families and/or sporadic 

individuals, depending on the disease/study type. In linkage analysis a collection 

of families with the same trait or phenotype is investigated. Large pedigrees with 

many affected individuals are more informative in mapping of disease-associated 

loci. In homozygosity mapping consanguineous families and/or sporadic patients 

are investigated, with familial cases with more than one affected individuals 

providing increased power to the analysis. When multiple families are used in the 

same analysis (linkage or homozygosity mapping) it is of critical importance that 

their phenotype is carefully evaluated, so that misdiagnoses that could lead to false 

positive or false negative results can be avoided.  

2. Mapping of the candidate interval. The second step is to define the candidate region in 

the evaluated family members as tightly as possible (Collins, 1992). Any gross 

chromosomal rearrangements or identification of deletions spanning tens or 

hundreds of kb can greatly facilitate the region mapping, as was demonstrated in 

the case of the cloning of the gene underlying Duchenne muscular dystrophy 

(MIM# 310200). Mapping of the candidate interval requires genotyping of the 

study material across the whole genome (genomewide analysis) with polymorphic 

markers. The most commonly used markers for genomewide analyses have been 

VNTRs (microsatellites and less frequently nowadays minisatellites) and SNPs. 

VNTRs are more informative than SNPs because of their higher mutation rate 

(approximately ~10-3 to 10-4 per locus per generation; Ellegren, 2000). SNPs on 

the other hand, although less polymorphic (mutation rate of 2.5 x 10-8; Nachman 

and Crowell, 2000), are more common and evenly distributed across the genome. 

It has been estimated that in an analysis of genomewide scan data the power 

obtained from genotyping approximately 400 microsatellites would be equivalent 

to genotyping approximately 1,000 SNPs (Landegren et al., 1998). Genomewide 

genotyping data can either be used to perform linkage or homozygosity analysis 

depending on the study.  

Linkage analysis and LD to fine-map the region of interest: Linkage analysis is the 

method in which the markers that have been genotyped across the genome are 
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inspected to see whether they co-segregate with the disease phenotype giving an 

indication that they reside within the disease locus in the families evaluated. If a 

marker in one locus and the locus containing the disease gene are inherited 

together, they are said to be in genetic linkage. The co-inheritance of alleles across 

two loci is computed assuming different recombination fractions (θ) between them. 

When θ=0 the two loci have a 0% chance of being separated by recombination 

and are thus said to be linked. A θ value of 0.5 denotes that the loci are not linked 

and any value in the range 0.5> θ >0 represents positions with different 

probabilities of having a recombination event separating the two loci. Whether 

the two studied loci are likely to be truly linked and not co-inherited by simple 

chance is expressed as the base 10 logarithm of the likelihood of the loci being 

linked divided by the likelihood of the loci not being linked at a given θ, known as 

the logarithm of odds or LOD score (Z; Morton, 1995): 

 

, 

where N=number of non-recombinant offspring, and R=number of recombinant 

offspring. 

 

Negative LOD score values argue against linkage (Z < -2.0), values of Z > 3.0 are 

suggestive of linkage, while values of 3.0 > Z > -2.0 are inconclusive.  

With linkage studies most commonly resulting in the mapping of regions as long 

as several Mb, fine mapping is almost always necessary to narrow down the 

critical interval. Refining of a candidate region can be achieved either by mapping 

a denser set of molecular markers (such as SNPs, which are found at a rate of ≥1 

per kb on average), or in founder populations by LD mapping. Two alleles in 

adjacent loci (e.g. a marker and a disease-causing mutation) are in LD when they 

are associated together more frequently than expected if the loci were segregating 

independently. This non-random association of markers occurs because the two 

loci are less likely to be separated by recombination. In LD fine-mapping the allele 

frequencies of markers within the critical interval are compared between affected 



REVIEW OF THE LITERATURE 26 

and control individuals. The set of marker alleles that are overrepresented in the 

patients versus the controls are indicative of close physical distance, being in non-

random association and thus in LD with the disease mutation. LD fine-mapping 

has successfully been applied in many isolated populations such as the Finnish 

population for the positional mapping of, for example, diastrophic dysplasia 

(MIM_222600; Hästbacka et al., 1992), and the progressive myoclonic epilepsy 

type 1 (EPM1) gene for Unverricht-Lundborg disease (MIM_254800; Lehesjoki et 

al., 1993).  

Homozygosity mapping: First introduced over two decades ago, homozygosity (or 

autozygosity) mapping represents a powerful tool for mapping rare genes causing 

recessive traits (Lander and Botstein, 1987). This approach looks for long 

chromososmal segments that are homozygous in affected individuals. 

Homozygosity can occur either when the alleles carried by an affected individual 

are identical by descent (IBD) over a locus, where the alleles are identical copies of 

the same ancestral allele, or when the alleles are identical by state (IBS) at a given 

locus, whereby the two allele-copies derive from different ancestral sources. 

Homozygosity mapping works by virtue of identifying haplotype signatures in 

IBD and for this reason it has been applied traditionally to families that show 

consanguinity. In such families a significant proportion of the offsprings’ genome 

is identical, with children from a first-cousin marriage having on average 6% of 

their genome in a homozygous stage, from a double first-cousin marriage 12.5% 

and so on (Lander and Botstein, 1987). The degree of homozygosity encountered 

in such children by far exceeds the extent of homozygosity seen in a general 

population, resulting in enrichment of rare recessive diseases in the former 

(Broman and Webber, 1999). According to mathematical calculations inordinate 

numbers of families would be needed in order to have power to detect linkage in 

nuclear families with recessively inherited disorders (Wong et al., 1986). With 

homozygosity mapping, however, only ten unrelated affected children from 

consanguineous marriages are enough to map a recessive gene (Lander and 

Botstein, 1987), with no need to genotype all the intervening relatives (Carr et al., 

2006). A single affected child of a first-cousin marriage is expected to contain the 
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equivalent total information as an outbred nuclear family with three affected 

children (Lander and Botstein, 1987). In such a child, approximately 20 segments 

exceeding 3 centiMorgans (cM) in length can be identified, with the longest 

segment usually harboring the disease locus (Woods et al., 2006). A clear pitfall 

arising from this observation is that in inbred children there is an excess of 

homozygosity and thus identifying the “true” disease locus might be challenging. 

A way to overcome this is by comparing the homozygous segments of unrelated 

individuals affected by the same disease and displaying similar phenotypes and 

prioritizing those over which several unrelated patients are simultaneously 

homozygous, which would suggest that homozygosity over such loci is less likely to 

have occurred by chance. Inspection of recombinations in each of these patients 

further facilitates in narrowing down the critical interval. Successful examples of 

disease gene identification by use of homozygosity mapping are the identification 

of the eighth NCL-causing gene, the major facilitator superfamily containing 8 

(MFSD8), in a subset of mainly Turkish patients (Siintola et al., 2007), and the 

RAB23 gene underlying Carpenter syndrome (Jenkins et al., 2007). 

3. Evaluation of positional candidate genes. After the definition of the critical interval with 

as much resolution as possible, the genes lying within it are listed and prioritized 

for mutation screening (Collins, 1995). Prior to the HGP era extensive physical 

mapping and cloning were required. Today, after the incorporation of the HGP 

data in publicly available genome browsers, cataloguing of candidate genes has 

become very easy. Prioritization of the list of genes that map within the region of 

interest is achieved after having obtained in silico and comparative genomics 

information on their putative or demonstrated function and spatio-temporal 

expression. When the critical interval is too long and prioritization of the 

positional candidates is not possible, targeted next-generation sequencing of all the 

genes residing within the candidate locus, seems to be the most suitable approach. 

This method was successfully employed to screen 108 candidate genes residing 

within a previously identified linkage region on chromosome 9q34.3 in an affected 

individual with autosomal recessive prelingual nonsyndromic sensorineural 

hearing loss. Targeted re-sequencing of the critical 2.9 cM interval revealed a 
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nonsense mutation in C9orf75, designated taperin (TPRN), establishing it as the 

underlying disease-causing gene (Rehman et al., 2010).  

 

2.4.3 Confirmation of a disease-causing gene 

A gene identification study cannot be considered successful unless the disease-associated 

role of the genetic changes or of the gene has been established. There are several ways 

that can be used to shed light into the causality of the variants identified and thus into the 

resultant causality of the defective gene: 

1. Segregation with the disease phenotype. Once sequence changes are identified, it 

should be confirmed that they segregate with the disease phenotype in the 

evaluated families. In dominant disorders with complete penetrance all the family 

members carrying one copy of the mutation should also manifest the phenotype in 

question. When the penetrance is incomplete, it is not mandatory that all the 

mutation carriers will have the disease phenotype. In this case, however, the 

penetrance in the study cohort should approximate the value described in the 

literature (whenever this is possible). In recessive disorders all affected individuals 

need to be homozygous for the mutation (or compound heterozygous when two 

different mutations run in the same family), and the unaffected parents obligate 

carriers. 

2. Screening of control chromosomes. Towards establishing the pathogenic role of a 

sequence variant it is important to evaluate at least 200 preferably ethnically 

matched control chromosomes. If the variant is causing disease then it should not 

be detected in a homozygous state in the healthy population. If the change is 

identified in the control chromosomes then the frequency of the variant should 

not exceed the allele frequency expected for the population studied. 

3. Identification of mutations in unrelated families. A major factor that can provide 

evidence in favor of the causality of a genetic defect is the identification of other 

families with defects in the same gene. If only a single family is found to carry 

defects in a given gene it is difficult to assess whether these changes represent true 
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disease-causing mutations, private polymorphisms or private modifiers of 

phenotype. 

4. Impact of the change. Depending on the type of change identified, different 

conclusions can be drawn for the impact it might have on the gene product. 

Nonsense mutations can have a pronounced impact, causing the introduction of 

premature stop codons with the resultant proteins being truncated and erroneous, 

or targeted for nonsense-mediated decay by the cell’s mRNA surveillance 

mechanism (Maquat, 2004; Chang et al., 2007a). Insertions, deletions and indels 

can either result in frameshifts or in in-frame removal or insertion of extra amino 

acid residues. The frameshift changes are predicted to cause the formation of 

aberrant proteins, either via introducing stop codons like the nonsense mutations, 

or via eliminating the existing stop codons. The effect of changes that affect the 

splicing is not always straightforward and sometimes further investigation is 

needed for their disease-association to be established. Whenever invariant splice 

site nucleotides at the donor and acceptor intronic splice junctions are affected, 

the normal splicing is abolished because cryptic splice sites, splice enhancers or 

splice silencers are activated, leading to an inability to define the exon boundaries 

resulting in exon skipping or intron retention and subsequently to abnormal 

proteins (Cartegni et al., 2002; Nakai and Sakamoto, 1994). However, changes 

that can affect the correct splicing of a transcript can occur beyond the consensus 

splice site positions. To be able to unequivocally test the impact of a sequence 

variation on splicing, the complementary DNA (cDNA) sequence must be 

evaluated with the reverse transcriptase polymerase chain reaction (RT-PCR) 

(Varon et al., 2003). Finally, the missense changes are the most difficult types of 

sequence variation to assess, since their impact on protein expression and function 

is not as straightforward. To deduce the possible outcome of a missense change 

the conservation of the affected residue must be evaluated. Typically, 

evolutionarily conserved amino acids represent critical residues for the protein 

function. A second method involves in silico analyses that in addition to 

conservation also compares the putative mutation effects on protein folding. Such 

analyses can be performed with freely available prediction programs like 
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PolyPhen 2 (http://genetics.bwh.harvard.edu/pph2/) and SNPs3D 

(http://www.snps3d.org/).  

5. Functional evaluation. Only functional validation can result in the distinction 

between a disease-causing mutation and a benign polymorphism. Nevertheless, 

functional evaluation of the impact of a sequence variant is greatly dependent on 

what is already known about the protein. Assuming the protein function is known 

a simple test can be employed to assess the variant causality. For example if the 

encoded product is an enzyme, an enzymatic test measuring the activity levels of 

the mutant protein can be used. In cases where the protein function remains 

elusive primary functional properties can be assessed. These can involve 

subcellular localization studies to determine whether the protein localization is 

altered, or Western blot assays to evaluate changes in protein expression levels. 

6. Disease modeling in cellular and/or in vivo systems. If the disease can be modeled 

in in vitro or in vivo systems, it provides a powerful tool to further study the impact 

of the changes identified. Several mouse models have been generated for a 

substantial number of human disorders thus far using many of the available 

techniques, such as knock-out models, where the gene is irreversibly silenced, or 

knock-in models, where specific allelic mutations are introduced in a given gene. 

A major drawback is that modeling a disease in another organism can be a very 

time-consuming process. Furthermore, it is not guaranteed that the models 

produced will recapitulate the key clinical features of the human disorder, given 

the different physiologies existing between humans and experimental animals. 

Alternatively, in animal models where the gene can be silenced with RNA 

interference (RNAi in mice or morpholinos in zebrafish), the causal effects of the 

mutations can be evaluated via injection of the mutant constructs, whereby 

restoration of the normal phenotype argues in favor of the mutant not being 

pathogenic, while failure to restore the normal phenotype provides evidence for 

the pathogenic role of the change (Lieschke and Currie, 2007). 
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2.4.4 Factors complicating disease gene identification 

Several factors can influence the outcome of a linkage analysis. If such factors are not kept 

in consideration, linkage can be missed. One of the most important limiting 

characteristics of genetic diseases is locus heterogeneity, a phenomenon in which mutations in 

different genes residing in distinct loci can result in similar clinical phenotypes. In linkage 

studies of disorders for which locus heterogeneity exists in the collection of families 

studied, the locus or gene will be extremely hard to map. A second factor is allelic 

heterogeneity, which describes the case of different mutations in the same gene underlying 

significantly different clinical phenotypes. Pleiotropy resulting from concomitant mutations 

in different genes required to manifest the phenotype is a third factor that can also 

complicate genetic studies. Variable expressivity of a gene can greatly influence the outcome 

of an analysis since it can result in modification of a phenotype. Several phenomena can 

result in variable gene expressivity such as epistasis, the synergistic effect of nonallelic 

modifier genes, gene-environment interactions, incomplete penetrance, whereby individuals with the 

disease genotype can fail to manifest the disease, or phenocopies, where individuals who do 

not have genetic defects can mimic a particular phenotype. Finally, mutations residing outside 

the studied region such as in introns or in the regulatory elements of a gene, can greatly 

complicate disease gene identification. 
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2.5 Childhood-onset PMEs 

Traditionally, three main categories of epilepsies are recognized on the basis of etiology: 

idiopathic, symptomatic, and cryptogenic. Idiopathic epilepsies are caused by a known or 

presumed genetic defect, and in these the seizures are the main or even only manifested 

symptom. In symptomatic epilepsies the epileptic events are only one of the symptoms 

associated with a defined neurological condition, which can be either acquired (brain 

tumor, hypoxic-ischemic episode) or hereditary (Capovilla et al. 2009). Cryptogenic 

epilepsies comprise all epilepsies with unidentifiable etiology. 

A clinically definable group of symptomatic epilepsies with onset of symptoms in most 

cases in childhood comprises the progressive myoclonic epilepsies (PMEs; Berkovic et al., 

1986). The PMEs are characterized by myoclonus, tonic-clonic seizures, progressive 

neurologic decline and in many cases premature death (Berkovic et al., 1986). A 

combination of clinical features such as age of onset or type of seizures manifested, 

together with pathologic examinations and molecular genetic analyses, have aided in the 

definition of six distinct main PME entities: Unverricht-Lundborg disease (ULD), Lafora 

disease, the NCLs, the sialidoses, myoclonic epilepsy with ragged red fibres (MERRF) 

and dentatorubraöpallidoluysian atrophy (DRPLA) (reviewed in Ramachandran et al., 

2009). Age of onset in ULD, LD, sialidoses type II, and MERRF is typically in childhood, 

during the second decade of life, and patients survive at least until adulthood (Norio and 

Koskiniemi, 1979; Van Heycoptenhamm, 1963; Sasaki et al., 1983). In sialidoses type I 

the onset is in adulthood and survival is prolonged. Finally in the NCLs and in DRPLA, a 

wide spectrum of disease onset has been described with each disease entity having cases 

ranging from congenital to adulthood affection (reviewed in Mole et al., 2005; Noskova et 

al., 2011; Zupnac and Legros, 2004). The PMEs are autosomal recessive disorders, the 

only exceptions being the autosomal dominant DRPLA and MERRF (Table 1; Delgado-

Escueta et al., 2001). 
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Table 1. Recessively inherited PMEs with onset in childhood 

Disorder Subtype MIM # 
Defective 

gene 
Protein Onset Storage material 

Reference for gene 
identification 

Unverricht-
Lundborg 

disease 
EPM1 601145 CTSB Cystatin B 6-15 years No storage material Pennacchio et al., 1996 

EPM2A 607566 EPM2A Lafora PTPase 8-18 years Minassian et al., 1998 
Lafora 
Disease EPM2B 608072 NHLRC1 NHL repeat 

containing protein 1 
Mean onset 

12 years 

Periodic acid-Schiff-positive 
inclusions in various tissues Chan et al., 2003 

Sialidosis Type II 608272 NEU1 Sialidase-1 0 months-
12 years 

Lysosomal storage of sialidated 
glycopeptides and 
oligosaccharides 

Bonten et al., 1996 

CLN1 
disease 

256730 PPT1 Palmitoyl-protein 
thioesterase 1 

10-18 
months 

GROD Vesa et al., 1995 

CLN2 
disease 

204500 TPP1 Tripeptidyl-peptidase 
1 

2-4 years CL, CL/FP, CL/GROD, or 
CL/FP/GROD 

Sleat et al., 1997 

CLN3 
disease 

204200 CLN3 CLN3 5-10 years FP, CL, FP/CL, FP/GROD, 
FP/CL/RL, or FP/CL/GROD 

The International 
Batten Disease 

Consortium, 1995 

CLN5 
disease 

256731 CLN5 CLN5 4-7 years 
FP, CL, FP/CL, FP/RL, 

FP/GROD, or 
FP/CL/RL/GROD 

Savukoski et al., 1998 

CLN6 
disease 

601780 CLN6 CLN6 3-8 years FP/CL, or FP/GROD Gao et al., 2002 
Wheeler et al., 2002 

CLN7 
disease 

610951 MFSD8 
Major facilitator 

superfamily domain-
containing protein 8 

2-7 years FP, FP/CL, FP/GROD, 
FP/RL/CL, or FP/CL/GROD 

Siintola et al., 2007 

CLN8 
disease 

600143 CLN8 CLN8 2-7 years FP, CL, FP/CL, CL/GROD, or 
FP/CL/GROD 

Ranta et al., 1999 

CLN9 
disease 

609055 unknown unknown 4 years GROD and CL Gene remains 
unidentified 

Neuronal 
ceroid 

lipofuscinoses 
(NCLs) 

CLN10 
disease 

610127 CTSD Cathepsin D At birth GROD Siintola et al., 2006 
Steinfeld et al., 2006 

Abbreviations used: GROD: granular osmiophilic deposits, CL: curvilinear bodies, FP: fingerprint profiles, RL: rectilinear bodies, n.d.: not defined 
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In addition to the six main PME entities, a number of less common subtypes have also 

been described (Berkovic et al., 1986). For example, a single homozygous mutation in 

prickle homolog 1 gene (PRICKLE1) was reported to underlie Unverricht-Lundborg type 

1B (EPM1B; MIM_612437) in two families of Israeli and one family of Jordanian origin 

(Bassuk et al., 2008). A dosage effect was reported for the same gene since heterozygous 

changes in it have also been associated with epilepsy (Tao et al., 2011). Two heterozygous 

changes have also been identified in the homolog of PRICKLE1, PRICKLE2, as the 

underlying causes of a juvenile onset subtype termed EPM5 (MIM_613832; Tao et al., 

2011). A single nonsense mutation (p.Arg99X) in the potassium channel tetramerization 

domain-containing 7 gene (KCTD7), identified in a Moroccan pedigree with three 

affected individuals, is associated with EPM3 (MIM_611725; van Bogaert et al., 2007). In 

EPM3 the disease onset is in late-infancy (16-24 months) and the patients become 

demented (van Bogaert et al., 2007). Action-myoclonus with or without renal-failure 

syndrome (AMRF), also known as EPM4 (MIM_254900), is another recessively inherited 

subtype of PME with onset ranging from juvenile age to adulthood (14-23 years). EPM4 

is caused by mutations in the scavenger receptor class B, member 2 gene (SCARB2) and is 

characterized by the extraneuronal accumulation of irregularly shaped and 

autofluorescent pigmented granules in the brain (Berkovic et al., 2008; Dibbens et al., 

2009). Finally, a homozygous missense change (p.Gly144Trp) identified in the Golgi 

SNAP receptor complex member 2 (GOSR2) in five individuals that apparently shared a 

common ancestor was reported to cause EPM6 (MIM_614018), with onset in early 

childhood and ataxia as the presenting symptom (Corbett et al., 2011).  
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2.6 Neuronal ceroid lipofuscinoses 

The NCLs are one of the six major clinical entities comprising the group of PMEs 

(Berkovic et al., 1986). Although the NCLs are considered rare disorders, with incidence 

ranging between 1:12,500 and 1:100,000 (Santavuori, 1988; Rider and Rider, 1988), they 

comprise the most common cause of neurodegeneration in childhood. The hallmark that 

establishes a NCL diagnosis is the accumulation of autofluorescent material in the 

lysosomes of mainly neurons but also extraneural cells (Haltia, 2003; Mole et al., 2005). 

Today it remains an open question whether this intracellular accumulation is responsible 

for the extensive neuronal death taking place throughout disease progression. Most NCL 

subtypes are transmitted in a mendelian recessive manner. Nevertheless, descriptions of 

rare dominant cases also exist in the literature (reviewed by Mole et al., 2005). NCL-

affected patients present with a variety of symptoms, including different types of epileptic 

seizures, regression in motor skills, visual failure, cognitive impairment and premature 

death. The course of the disease is continuously debilitating and patients eventually die 

prematurely (Haltia, 2003). 

To date, ten different subtypes of human NCLs and nine genes underlying them have 

been identified (PPT1, TPP1, CLN3, DNAJC5, CLN5, CLN6, MFSD8, CLN8, and CTSD) 

(Tables 1 and 2; Noskova et al., 2011; reviewed by Mole et al., 2005). Classification of 

NCL patients into any of the different known subtypes has traditionally followed two 

systems: one based on the age of onset, and the second based on the morphology of the 

lipopigment material. Five main types are recognized according to age of onset: 

congenital (CONCL), infantile (INCL), late infantile (LINCL), juvenile (JNCL) and adult 

(ANCL) NCL (Mole et al., 2005). After almost two decades of genetic research, the 

identification of 364 mutations and the molecular genetic background resolution for 

several hundreds of patients, many atypical clinical cases have been described, rendering 

NCL classification a difficult task. Towards this, a new nomenclature has only recently 

been proposed which takes into consideration not only the clinical and neuropathological 

findings, but also the underlying genetic findings (study I). 
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Table 2. Genes and proteins associated with NCL disease 

Disease Onset 

Chromo- 

somal 

position 

Gene 
Type of 

protein 
Function Compartment 

CLN1 

disease 
Infancy 1p32 PPT1 Soluble Thioesterase Lysosomes 

CLN2 

disease 

Late-

infancy 
11p15 TPP1 Soluble Peptidase Lysosomes 

CLN3 

disease 
Juvenile 

16p12.1-

11.2 
CLN3 

Transmembrane 

(5TMs) 
Not known 

Lysosomes 

Endosomes 

CLN4 

disease 
Adulthood 20q13.33 DNAJC5 

Subunit of 

chaperone 

complex 

Chaperone 
Plasma 

membrane 

CLN5 

disease 

Late-

infancy 

13q21.1-

q32 
CLN5 Soluble Not known Lysosomes 

CLN6 

disease 

Late-

infancy 
15q21-23 CLN6 

Transmembrane 

(7TMs) 
Not known ER 

CLN7 

disease 

Late-

infancy 

4q28.1-

q28.2 
MFSD8 

Transmembrane 

(12TMs) 
Not known Lysosomes 

CLN8 

disease 

Late-

infancy 
8q23 CLN8 

Transmembrane 

(5TMs) 
Not known ER and ERGIC 

CLN9 

disease 
Juvenile 

Not 

known 

Not 

known 
Not known Not known Not known 

CLN10 

disease 
Congenital 11p15.5 CTSD Soluble Protease Lysosomes 

Abbreviations used: ER: endoplasmic reticulum, ERGIC: ER-Golgi intermediate compartment 

 

2.6.1 NCL subtypes with congenital onset: CLN10 disease 

Congenital NCL is caused by mutations in the cathepsin D (CTSD) gene and is the 

earliest onset and most severe form among the NCL phenotypes (Siintola et al., 2006). To 

date only eleven cases of congenital NCL have been reported (Barohn et al., 1992; Brown 

et al., 1954; Humphreys, 1985; Garborg et al., 1987; Norman and Wood, 1941; 

Sandbank, 1968; Siintola et al., 2006; Fritchie et al., 2009). The onset is believed to be in 

embryonic life, with developmental delay starting from the 30th-32nd week of gestation 
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(Sandbank, 1968; Fritchie et al., 2009). Upon birth the patients show post-natal 

respiratory insufficiency, microcephally, reduced brain size, and status epilepticus. The 

degree of affection is so severe that patients die within hours to weeks after birth (Siintola 

et al., 2006). The autofluorescent storage bodies in CLN10 disease present granular 

osmiophilic deposit (GROD) morphology, while the main protein component of the 

inclusions is the sphingolipid activator protein (SAP) D (Humphreys et al., 1985; Garborg 

et al., 1987; Barohn et al., 1992). 

The CTSD gene (NM_001909.3) was first identified in a naturally occurring ovine animal 

model for congenital NCL (Tyynelä et al., 2000). Subsequent identification of CTSD 

mutations in human patients has corroborated this gene as a member of the NCL family 

and the underlying cause of CLN10 disease (Siintola et al., 2006; Steinfeld et al., 2006; 

Fritchie et al., 2009). The protein encoded by CTSD is a lysosomal aspartic protease that 

belongs to the pepsin family (Metcalf and Fusek, 1993). Being synthesized as an inactive 

precursor proenzyme, CTSD is targeted to the endoplasmic reticulum (ER), where it is 

glycosylated and phosphorylated, via an N-terminal 20-aa target signal (Erickson et al., 

1981). The modified proenzyme is then targeted to the lysosomes via either the mannose-

6-phosphate (Man6P)-dependent, or Man6P-independent pathways (Zaidi et al., 2008). 

In its mature form, which occurs only in the acidic environment of the lysosomes, the 

enzyme is organized into a bi-lobed structure cleaving peptide bonds of polypeptide 

chains, mediating thus protein degradation, protease precursor form activation, or 

protease inhibitor inactivation (Rawlings and Barrett, 1995; Scarborough et al., 1994). 

No common mutations exist in the CLN10 subtype, with only three missense and one 

nonsense mutations having been reported to affect the sequence of CTSD to date 

(http://www.ucl.ac.uk/ncl/catD.shtml). All CTSD mutations are associated with loss of 

enzymatic activity, while only one of them (p.Ser100Phe) abolishes normal protein 

localization causing retention of the mutant proteins in the ER (Fritchie et al., 2009; 

Steinfeld et al., 2006).  
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2.6.2 NCL subtypes with infantile onset: CLN1 disease 

Mutations in PPT1 are usually associated with CLN1 disease, infantile. Children affected 

with this subtype have a disease onset at 6-18 months of age (Santavuori et al., 1973), 

although reduction in head growth can be observed even before 6 months of life, 

consistent with the disease beginning before the first symptoms become apparent 

(Santavuori et al., 2000). The presenting symptom is usually psychomotor decline during 

the second year of life, followed by seizures, ataxia, speech and visual failure, loss of 

ambulation by the age of 3 years, and death between 6-15 years of age (Santavuori et al., 

1988). The accumulating inclusions in CLN1 disease, infantile, always form GRODs and 

contain SAP A and D (Das et al., 1998; Santavuori et al., 2000). 

Mutations in PPT1 (NM_000310.3) were first associated with CLN1 disease, infantile, in 

a group of mainly Finnish patients (Vesa et al., 1995). The enzyme encoded by PPT1 is 

palmitoyl-protein thioesterase 1 (PPT1), a soluble fatty-acid hydrolase. A 25-aa signal 

peptide mediates lysosomal targeting of PPT1 (Schriner et al., 1996) via the Man6P-

dependent or alternative pathways (Hellsten et al., 1996; Verkruyse et al., 1996; Lyly et 

al., 2007). Although the substrate on which PPT1 operates is unknown the enzyme 

catalyzes the removal of fatty acyl groups from modified cysteines of lipid-modified 

proteins in vitro, and fatty acylated proteins in vivo (Lu et al., 1996). In contrast to the 

lysosomal localization of PPT1 in non-neuronal cells in neurons it is axonally targeted, 

co-localizing with the synaptosomes and synaptic vesicles rather than with lysosomes 

(Ahtiainen et al., 2003; Lehtovirta et al., 2001; Heinonen et al., 2000). 

To date 48 PPT1 mutations (http://www.ucl.ac.uk/ncl/cln1.shtml) have been described 

in patients from 19 different countries. Three of the 48 known PPT1 mutations are 

enriched in specific populations, with p.Thr75Pro and p.Arg122Trp being established by 

founder effects in Scotland and Finland, respectively (Munroe et al., 1998; Vesa et al., 

1995) and p.Arg151X being detected worldwide (Das et al., 1998; Mitchison et al., 1998; 

Munroe et al., 1998; Mole et al., 2001). All described mutations result in varying levels of 

reduced enzyme activity (Mitchison et al., 1998; Das et al., 2001; Sleat et al., 2001; 

Simonati et al., 2009). Additionally, some missense mutations result in alteration of the 
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normal protein distribution because the Man6P receptors (MPRs) cannot recognize the 

mutant peptides which remain trapped in the ER (Das et al., 2001). 

 

2.6.3 NCL subtypes with late infantile onset 

 

2.6.3.1  CLN2 disease 

Patients with classical CLN2 disease develop normally during the first year of life. Disease 

onset usually starts with seizures, which can be of any type between 2 and 4 years of age 

and is relatively fast followed by cognitive decline, loss of motor skills, myoclonous, ataxia, 

speech decline, and visual failure (Santavuori, 1988; Williams et al., 1999). Premature 

death can occur as early as 6 years of age or at the latest during the second decade of life 

(Mole et al., 2005). The ultrastructure of the autofluorescent material appears as 

curvilinear (CL) bodies, or a mixture of CL with fingerprint profiles (FP) and/or GRODs 

on electron microscopy (EM) analyses (Sleat et al., 1999; Hartikainen et al., 1999; Bessa 

et al., 2008; Elleder et al., 2008; Kohan et al., 2009). The protein material accumulating 

in the storage bodies consists of the subunit c of mitochondrial ATP synthase (SCMAS), 

and SAP A and D (Lake and Hall, 1993; Tyynelä et al.,1995). 

CLN2 disease, classic late infantile, is caused by mutations in TPP1 (NM_000391.3) 

which encodes for the lysosomal tripeptidyl-peptidase I (Sleat et al., 1997). Similar to 

PPT1 this pepstatin-insensitive carboxypeptidase is synthesized as a precursor polypeptide 

which becomes active in the lysosomal compartment (Sleat et al., 1997). Although it is 

known that lysosomal targeting of TPP1 is mediated by a 16-aa signal sequence the 

pathway(s) followed have not been specified (Steinfeld et al., 2004). TPP1 operates on 

small peptides undergoing degradation in the lysosomes and by removing tripeptides 

from their N-terminal domains at pH values of 4-4.5, and at lower pH levels (pH=3) it 

can act as an endopeptidase (Vines and Warburton 1998; Warburton and Bernardini 

2000; Ezaki et al., 2000). 
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Altogether 66 TPP1 affecting mutations have been reported in patients from 23 different 

countries (http://www.ucl.ac.uk/ncl/cln2.shtml). Of these, mutation p.Gly284Val is 

particularly predominant in the Canadian population, having been established by a 

founder effect (Ju et al., 2002). Two mutations (c.509-1G>C and p.Arg208X) have been 

encountered in high frequencies in patients worldwide (Zhong et al., 1998; Sleat et al., 

1999). Most of the mutations identified are loss of function, causing reduced activity of 

the mutant enzymes. This, however, might not be the only way in which TPPI mutations 

result in disease manifestation, since some mutations have been shown to impair 

lysosomal trafficking by trapping the mutant peptides in the ER (Steinfeld et al., 2004). 

 

2.6.3.2  CLN5 disease  

CLN5 disease represents a variant subtype of the classical LINCL. Originally identified in 

a subset of Finnish patients it was also known as the Finnish variant NCL (Santavuori et 

al., 1982; Santavuori et al., 1993). Patients with CLN5 disease, late infantile variant, have 

disease onset at 4-7 years of age. After manifestation of motor clumsiness and 

concentration disturbances, which most commonly comprise the presenting symptoms, 

mental and motor decline, myoclonus, epilepsy, ataxia and visual deterioration ensue 

(Holmberg et al., 2000; Santavuori et al., 1982; Santavuori et al., 1991). Patients lose 

their ability to walk by the age of 10 years and die when they are 10-30 years old. On EM 

analysis the autofluorescent material appears either as FP, or a mixture of FP with 

rectilinear (RL) bodies, CL and rarely GRODs (Santavuori et al., 1982; Mole et al., 

2005). The subunit accumulating in these granules is SCMAS, but can also be SAP A and 

D (Tyynelä et al., 1997). 

The defective gene of this subtype is CLN5 (NM_006493.2) which encodes a soluble 

lysosomal glycoprotein of unknown function (Savukoski et al., 1998; Schmiedt et al., 

2010). Four different starting methionines (at positions p.1, p.30, p.50 and p.62) produce 

four different peptides of different lengths, the roles of which remains elusive (Isosomppi 

et al., 2002). Although the lysosomal signal peptide has not been defined proteolytic 

cleavage of the motif has been proposed to occur at p.96 (Schmiedt et al., 2010). Similar 
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to the sorting mechanism of PPT1 both the Man6P-dependent and alternative pathways 

can be used for the lysosomal trafficking of CLN5 (Sleat et al., 2009; Kollmann et al., 

2005; Schmiedt et al., 2010). 

Altogether 24 CLN5 mutations (http://www.ucl.ac.uk/ncl/cln5.shtml) have been 

detected in patients from 19 different countries. Most CLN5 mutations are private with 

only one, the nonsense p.Tyr392X, having been established due to a founder effect in the 

Finnish population (Savukoski et al., 1998). With the exception of a subset of four 

mutations that cause ER retention and subsequent degradation of the mutant proteins, 

the impact that the remaining 20 mutations might have is difficult to deduce while the 

protein’s function remains unknown (Schmiedt et al., 2010; Lebrun et al., 2009).  

 

2.6.3.3  CLN6 disease 

CLN6 disease is the second variant subtype of LINCL, also known as the Costa Rican 

variant. The clinical presentation of patients positive for the CLN6 subtype is essentially 

similar to that of TPP1 positive patients. In CLN6 disease onset is slightly later that in 

CLN2 disease, at 3-8 years of age (Mole et al., 2005). The most common presenting 

symptoms are epileptic seizures and motor difficulties. Additional symptoms include 

mental regression, speech and visual impairment, myoclonus, and ataxia (Mole et al., 

2005; Moore et al., 2008). Death occurs in the third decade of life (Pena et al., 2001). The 

ultrastructural granules accumulating in the lysosomes of CLN6 positive patients consist 

of a mixture of FP with CL and/or GRODs, and the protein in them consists of SCMAS 

(Sharp et al., 2003; Topcu et al., 2004; Elleder et al., 1997a; Mole et al., 2005). 

The CLN6 gene was simultaneously identified in a subset of Costa Rican and Venezuelan 

patients, and in the naturally occurring nclf mouse model (Gao et al., 2002; Wheeler et al., 

2002). The encoded peptide comprises a putative transmembrane protein (TM) of 

unknown function (Gao et al., 2002; Wheeler et al., 2002). CLN6 localizes to the ER in 

both neuronal and non-neuronal cells by means of two ER retention signals, one in the 

first 49 N-terminal aa residues and the second in the segment comprising TM6-TM7 

(Mole et al., 2004; Heine et al., 2007; Teixeira et al., 2006). 
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Although no evidence of a major founder effect exists for the 48 known CLN6 mutations 

(http://www.ucl.ac.uk/ncl/cln6.shtml), three of them are common in certain 

populations: the nonsense p.Glu72X in Costa Rica, p.Ile154del in Portugal, and 

p.Val91GlufsX42 in Newfoundland (Wheeler et al., 2002; Gao et al., 2002; Teixeira et 

al., 2003; Moore et al., 2008). Mutations in CLN6 do not have an impact on the normal 

distribution of the protein or its ability to dimerize (Mole et al., 2004; Kurze et al., 2010). 

Instead, they are postulated to exert their pathogenic effect on the stability and function 

of the mutant polypeptides, justified by the reduced rate of synthesis and stability of the 

CLN6 mutants compared to wild-type peptides (Kurze et al., 2010). 

 

2.6.3.4  CLN7 disease 

CLN7 disease comprises the third variant form of LINCL. The CLN7 disease typically 

starts between 2-6 years of age, with any of seizures, ataxia, visual failure, or 

developmental regression as the presenting symptoms (Topcu et al., 2004; Siintola et al., 

2007). In advanced disease stages the CLN7 subtype clinically resembles CLN2 disease, 

though in earlier stages the two entities differ in the severity of seizures which are more 

aggravated in CLN7 patients (Topcu et al., 2004; Siintola et al., 2007). The majority of 

patients lose ambulation on average two years after disease onset, and can survive at 

maximum until the third decade of life (Topcu et al., 2004; Siintola et al., 2007). Defects 

in MFSD8 are always associated with condensed FP (Siintola et al., 2007; Topcu et al., 

2004). In addition to the FP findings on EM examination a mixture of FP with CL 

and/or GRODs can also be identified (Aiello et al., 2009).  

The disease is caused by mutations in MFSD8 (NM_152778.2; Siintola et al., 2007). Since 

MFSD8 was originally identified in a subset of mainly Turkish patients, this subtype was 

originally referred to as the Turkish variant (Topcu et al., 2004; Siintola et al., 2007). The 

encoded protein is predicted to be transmembrane and anchored to the lysosomal 

membrane by 12 TMs (Siintola et al., 2007; Steenhius et al., 2010). Sequence homology 

analyses denote a predicted transporter function, as MFSD8 is a member of the major 

facilitator superfamily (MFS) of transporter proteins having an MFS domain (MFS_1) at 

positions p.42_477 and a sugar transporter domain (Sugar_tr) at positions p.72_147 
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(Siintola et al., 2007). Nevertheless, the substrate and precise role of MFSD8 remain 

unknown to date. 

Of the 14 mutations detected in patients with CLN7 disease 

(http://www.ucl.ac.uk/ncl/cln7.shtml) almost all are private for the families in which 

they have been identified (Siintola et al., 2007; Aiello et al., 2009; Stogmann et al., 2009; 

Aldahmesh et al., 2009). Only the splice-site affecting mutation c.863+3_4insT has 

occurred on an almost identical genetic haplotype in three unrelated patients from Italy 

that most likely share a common ancestor (Aiello et al., 2009). Since none of the 

mutations detected results in changes of the lysosomal distribution the primary defects are 

likely to arise from impaired functional properties (Siintola et al., 2007). 

 

2.6.3.5  CLN8 disease 

CLN8 disease, EPMR (progressive epilepsy with mental retardation), otherwise also 

known as Northern epilepsy, is caused by mutations in CLN8 (NM_018941.3; Ranta et 

al., 1999). The missense mutation p.Arg24Gly, representing a founder effect, was 

identified in 22 Finnish patients (Ranta et al., 1999; Hirvasniemi et al., 1994). In tandem 

with the findings in Finnish patients, a homozygous frameshift-causing mutation 

(c.267_268insC) identified in Cln8 in the motor neuron degeneration mouse (mnd) 

established the gene’s disease association (Ranta et al., 1999). CLN8 disease, EPMR was 

linked to the group of NCLs after the detection of CL bodies in the cells of affected 

individuals (Herva et al., 2000). Clinically, the patients have disease onset between 5-10 

years of age, usually manifesting with tonic-clonic seizures and psychomotor decline, but 

do not develop myoclonus (Ranta et al., 1999). 

The major phenotype associated with mutations in CLN8 is CLN8 disease, late infantile 

variant, first described in a subset of Turkish patients (Mitchell et al., 2001; Topcu et al., 

2004). The disease onset is around 2-7 years of age with seizures and/or motor skill 

decline (Ranta et al, 2004; Topcu et al., 2004), after which myoclonus, cognitive decline, 

speech impairment, ataxia, and visual failure ensue (Ranta et al, 2004; Topcu et al., 

2004). The disease progresses very rapidly with patients developing the whole spectrum of 
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clinical symptoms within two years of disease onset (Topcu et al., 2004). The 

ultrastructural inclusions form condensed FP or a mixed pattern of FP with CL, RL and 

occasionally GRODs, in which the main accumulating protein component can be 

SCMAS or SAP A and D (Topcu et al., 2004; Cannelli et al., 2006; Palmer et al., 1989; 

Herva et al., 2000; Ezaki and Kominami, 2004). 

CLN8 encodes a putative transmembrane protein with five TMs (Ranta et al., 1999). 

CLN8 is targeted to the ER and/or ER-Golgi intermediate compartment (ERGIC) of 

non-neuronal cells via a C-terminal ER retention signal (283-KKPR-286), which causes 

Golgi trapping when disrupted by mutations (Ranta et al., 1999; Lonka et al., 2000). In 

neurons the localization of CLN8 is somewhat different, with the protein being targeted 

very close to the plasma membrane (PM; Lonka et al., 2004). This differential localization 

between neuronal and non-neuronal cells is thought to arise from the existence of 

unknown vesicular transport mechanisms in the neuronal cells (Lonka et al., 2004). The 

TLC domain (extending over the region p.62-262) of CLN8 readily makes it a member of 

the TLC protein family (TRAM-LAG1-CLN8), which is postulated to have a role in 

sensing, biosynthesis, and metabolism of lipids or protection of proteins from proteolysis, 

(Winter and Ponting, 2002). Alternatively, CLN8 has been implied to predispose to cell 

survival, since it increases resistance of neurons to damage caused by toxic stimuli 

(Vantaggiato et al., 2009). 

The sequence of CLN8 is affected by 16 different mutations detected in patients from six 

different countries (http://www.ucl.ac.uk/ncl/cln8.shtml). Interestingly, only missense 

and deletion mutations have been detected in this gene. None of the missense mutations 

tested impaired the intracellular distribution of CLN8, suggesting that the primary defects 

result in disturbed functional properties rather than disturbed trafficking within ERGIC 

(Lonka et al., 2000; Lonka et al., 2004; Vantaggiato et al., 2009). 
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2.6.4 NCL subtypes with juvenile onset 

 

2.6.4.1  CLN3 disease 

Clinical onset in CLN3 disease, classic juvenile, is between 5 and 10 years of age. The 

hallmarks of CLN3 disease comprise progressive visual loss, which is usually the leading 

clinical symptom, and vacuolated lymphocytes in the peripheral blood as the main 

pathological finding (Santavuori, 1988; Zeman, 1976). Seizures follow the initial visual 

symptoms, while early in the second decade of life the children develop adaptive and 

motor disabilities leading to ataxia and motor decline (Santavuori, 1988). In the mid-to 

late stages of the disease patients develop dementia and behavioral abnormalities 

including hallucinations and schizophrenia-like behavior. Affected individuals die 

prematurely at an average age of 20-30 years (Järvelä et al., 1997). The autofluorescent 

material accumulating in the cells of patients with CLN3 disease, classic juvenile, usually 

form FP (Zeman, 1976; Santavuori, 1988). However, occasionally CL, or a mixture of 

FP, CL, RL and/or GRODs, can be detected upon EM analysis (Mole et al., 2005). The 

protein accumulating in the lipopigment inclusions is SCMAS (Palmer et al., 1992).  

A collaborative effort identified CLN3 (NM_000086.2) as the gene defective in CLN3 

disease, classic juvenile (The International Batten Disease Consortium, 1995). The 

encoded peptide comprises a type III lysosomal transmembrane protein with six TM 

domains, and it is the most highly conserved of all the NCL proteins, having orthologous 

genes present from yeast to humans (The International Batten Disease Consortium, 1995; 

Phillips et al., 2005; Kyttälä et al., 2004). CLN3 is targeted to the membrane of the 

endosomal and lysosomal vesicles, travelling through the indirect trafficking pathway 

(Ezaki et al., 2003; Haskell et al., 2000; Järvelä et al., 1999; Järvelä et al., 1998; Mao et 

al., 2003). CLN3 sorting is mediated via two lysosomal targeting motifs, an 

unconventional signal found in the second cytoplasmic loop and a dileucine motif at the 

C-terminal cytosolic domain of the protein (Haskell et al., 2000; Kyttälä et al., 2004; 

Storch et al., 2007). In neurons, however, the distribution of CLN3 is in the synaptic 

vesicles (Haskell et al., 2000). 
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To date 46 different mutations have been associated with CLN3 disease, the majority of 

which produce abnormally short polypeptides (http://www.ucl.ac.uk/ncl/cln3.shtml). 

One of the reported mutations (c.460-280_677+382del967), commonly referred to as the 

1.02 kb deletion, is found in 81% of CLN3 disease chromosomes (The International 

Batten Disease Consortium, 1995). Despite the implication of CLN3 in several different 

pathways such as autophagy, apoptosis, membrane trafficking and endocytic events, the 

precise function of CLN3 remains elusive, making it difficult to evaluate the impact of the 

mutations on the resultant peptides (Lane et al., 1996; Cao et al., 2006; Chang et al., 

2007b; Uusi-Rauva et al., 2008; Luiro et al., 2004). Although some deletion mutations 

result in retention of the mutants in the ER, the missense mutations evaluated do not 

interfere with normal protein distribution, suggesting that the mutations are loss of 

function (Järvelä et al., 1999; Haskell et al., 2000). 

 

2.6.4.2  CLN9 disease 

CLN9 disease (MIM# 609055) represents a provisional assignment for a variant form of 

JNCL that remains to be identified. This subtype was described after exclusion of NCLs 

by means of genetic testing of the known genes and of other lysosomal storage disorders 

through enzyme level testing in two sisters from Serbia and two brothers from Germany. 

The clinical phenotype of both familial cases was similar to the CLN3 disease, classic 

juvenile, starting with visual failure and seizures. The disease onset is at 4 years of age and 

death occurs between ages 15 and 20 years (Schulz et al., 2004). Other clinical symptoms 

associated with this subtype involve cognitive decline, speech deterioration, 

neuropsychiatric symptoms, ataxia and loss of ambulation (Schulz et al., 2004). On EM 

analysis the characteristic NCL lipopigment inclusions detected are a combination of 

GRODs with CL and the protein component accumulating in them is SCMAS (Schulz et 

al., 2004).  

Although the gene and protein underlying this subtype remain elusive, mass spectrometry 

analyses have revealed a possible link to sphingolipid metabolism which is perturbed in 

the patients’ fibroblasts (Schulz et al., 2006).  



REVIEW OF THE LITERATURE 47 

2.6.5 NCL subtypes with adult onset: CLN4 disease 

CLN4 disease can be divided into two overlapping and highly similar phenotypes: Kufs 

disease (MIM# 204300) and Parry disease (MIM# 162350). In both forms of ANCL the 

onset is usually in the third decade of life (ranging from 10-51 years of age). Although the 

disease progression is much slower compared to the other NCL subtypes, the patients die 

approximately 12 years after disease onset (Haltia, 2003). ANCL is not associated with 

visual decline. On biopsy examination the storage bodies identified form membrane-

bound GRODs, FPs, CL and/or RL, enclosing SCMAS or SAP A and D proteins 

(Haltia, 2003). 

Kufs disease shows a recessive mode of inheritance and can be further divided into two 

categories depending on the presented symptoms. Kufs type A is mainly characterized by 

PME, dementia, ataxia, and late pyramidal and extrapyramidal symptoms. Only 

recently, CLN6 was identified as the underlying cause of Kufs type A, with nine different 

mutations in 10 unrelated families (Arsov et al., 2011). The majority of the mutations 

associated with the milder Kufs type A are missense. Mutations resulting in premature 

protein truncation were only identified in compound heterozygosity with “milder” 

missense mutations, suggesting that the resultant “milder” phenotype could arise from 

residual CLN6 function. Nevertheless, it is not until the function of CLN6 has been 

resolved that it can be tested whether the later onset and less severe Kufs type A is 

associated with mild alleles, or whether modifying alleles account for the phenotypic 

differences (Arsov et al., 2011). Type B on the other hand, usually starts with behavioral 

problems such as depression and progressive dementia, followed by ataxia, motor decline 

and extrapyramidal symptoms (Berkovic et al., 1988). 

Parry disease is clinically similar to Kufs disease with the only difference being in the 

mode of inheritance, which in case of Parry disease is autosomal dominant (Goebel and 

Braak, 1989). Parry disease is characterized by genetic heterogeneity, with some clinical 

cases carrying mutations in DNAJC5 and others remaining genetically unresolved 

(Noskova et al., 2011). Two distinct DNAJC5 mutations (p.Leu116del and p.Leu115Arg) 

were identified in heterozygous state in five different families. The encoded cysteine-string 

protein α (SCPα) is a component of an enzymatically active chaperone complex tethered 
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to the synaptic vesicles and ensuring the correct folding of several proteins with synaptic 

function and relevance (Noskova et al., 2011). The DNAJC5 genetic defects described 

affect conserved dileucine residues within the cysteine-string domain of the protein and 

are believed to exert their deleterious effects via mistargeting of the mutant proteins and 

via reducing their palmitoylation efficiency. The defective proteins in turn lead to 

depletion of SCPα, presynaptic dysfunction and inability to exhibit their neuroprotective 

role (Noskova et al., 2011). 

 

2.6.6 Atypical phenotypes caused by mutations in known NCL genes 

In addition to the typical phenotypes described in sections 2.6.1-2.6.5, each of the eight 

known NCL genes has also been reported to associate with atypical phenotypes (Table 3 

and Figure 2). These can involve earlier or later disease onset, more protracted or more 

severe disease course, manifestation of some symptoms and not of others. This is 

exemplified in CLN6 disease, presented above, which can result in both a late infantile 

onset phenotype and a much less severe adult onset form. Additionally, many cases of 

inter- and intra-familial variation in disease severity have been described in the NCL 

disorders. How mutations in the same genes can result in strikingly different phenotypes 

has not been explained, but it is thought that additional factors such as unidentified 

genetic determinants in genes acting as modifiers of phenotype, or even perhaps 

environmental factors, may play a role in this phenomenon. 
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Table 3. Atypical phenotypes caused by the NCL genes 

Gene Typical phenotype Atypical phenotypes Onset 

Morphology of 

lipopigment 

inclusions 

CLN1 disease, late infantile 1.5-3 years GROD, FP 

CLN1 disease, juvenile 2-10 years 
GROD, CL, RL, 

FP 
PPT1 

CLN1 disease, classic 

infantile 

CLN1 disease, adult 20-38 years GROD 

CLN2 disease, infantile 1-9 months CL 
TPP1 

CLN2 disease, classic late 

infantile CLN2 disease, juvenile 6-10 years CL, FP 

CLN3 disease, infantile 5 months n.d. 
CLN3 

CLN3 disease, classic 

juvenile CLN3 disease, protracted 5-9 years FP, CL, GROD 

CLN5 disease, infantile 4 months FROD, FP 

CLN5 disease, juvenile 4-9 years FP, CL 
CLN5 

CLN5 disease, late 

infantile variant 
CLN5 disease, adult 17 years 

GROD, FP, CL, 

RL 

CLN6 
CLN6 disease, late 

infantile variant 

CLN6 disease, adult or 

CLN6 disease, Kufs type A 
17-51 years FP, GROD 

MFSD8 
CLN7 disease, late 

infantile variant 
CLN7 disease, juvenile 11 years n.d. 

CLN8 
CLN8 disease, late 

infantile variant 
CLN8 disease, EPMR 5-10 years n.d. 

CTSD CLN10 disease, congenital CLN10 disease, late infantile 
early school 

age 
GROD 

Abbreviations used: n.d.: not defined, EPMR: progressive epilepsy with mental retardation 



REVIEW OF THE LITERATURE 50 

 

Figure 2. Differential diagnosis of NCLs. The classical phenotypes reproduced by mutations in each of the 

eight NCL-causing genes are shown in the blue boxes. The atypical phenotypes are shown in the light 

purple boxes. Disease subtypes are divided here according to the age of disease onset. 

 

2.6.7 Animal models with NCL-like phenotypes 

Animal models exist for all subtypes of NCL disorders except for CLN4 and CLN7 

disease (http://www.ucl.ac.uk/ncl/animal.shtml). These are either spontaneously 

occurring or engineered and they have been described in organisms ranging from the 

single celled yeast to larger animal models such as sheep and dog models. Although the 

two mouse models developed for CLN1 disease recapitulate key features of the disorder 

(Cln1-/-, Gupta et al., 2001; and Ppt1Δex4, Jalanko et al., 2005), the models developed in the 

nematode worm (Porter et al., 2005) and the fruit fly (Hickey et al., 2006) have not been 

as successful. In CLN2 disease only two animal models have been described, the 

generated knock-out mouse model (Cln2-/-, Sleat et al., 2004) and a naturally occurring 

dog model (Awano et al., 2006a). Only engineered models exist for CLN3 disease, which 

comprise four mouse models which accurately replicate the NCL pathology (Cln3-/-, 
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Mitchison et al., 1999; Katz et al., 1999; Cln3Δex7/8, Cotman et al., 2002; Eliason et al., 

2007) a worm model, which does not exhibit the typical NCL characteristics (de Voer et 

al., 2005), and yeast models (btn1, Pearce and Sherman, 1997; Gachet et al., 2005). In 

CLN5 disease the engineered Cln5-/- mouse model (Kopra et al., 2004) and spontaneous 

models occurring in the Border Collie dog, the Borderdale sheep, and Devon cattle 

(Melville et al., 2005; Houweling et al., 2006; Frugier et al., 2008), reproduce phenotypes 

similar to that described in patients with this subtype. CLN6 disease is modeled in the 

naturally occurring nclf mouse, New Zealand South Hampshire, and Merino sheep, and 

the Australian Shepherd dog (Gao et al., 2002; Wheeler et al., 2002; Jolly et al., 1989; 

Tammen et al., 2006; Katz et al., 2011). A spontaneous mouse model also exists for 

CLN8 disease (mnd, Ranta et al., 1999). In addition to the mnd model, CLN8 disease is 

also modeled in the naturally occurring English Setter dog (Katz et al., 2005). Finally, 

several animal models exist for CLN10 disease, including the mouse Ctsd-/- (Saftig et al., 

1995), and models in larger animals such as sheep and dogs (Tyynelä et al., 2000; Awano 

et al., 2006b). 

 

2.6.8 Trafficking and localization of the NCL proteins 

 

Four of the NCL associated proteins are soluble lysosomal enzymes while the remaining 

five transmembrane proteins reside in the lysosomes, ER, endosomal vesicles, or PM 

(Figure 3) (reviewed by Mole et al., 2005). The compartments where NCL proteins reside 

belong to the eukaryotic endomembrane system, of which there are three major pathways 

through which proteins traffic towards their final destination: the secretory pathway, the 

endocytic pathway and the lysosomal pathway. Which specific pathway a protein will 

follow in the cell depends on the targeting information carried on each newly synthesized 

peptide. Correct protein targeting is of primary importance for the function of the various 

organelles, as the properties that each of them displays are dependent on their protein 

composition. 
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Figure 3. Localization of the NCL-associated proteins. The figure was produced using Servier Medical Art 

(http://www.servier.com/servier-medical-art/powerpoint-image-bank).  

 

2.6.8.1  The secre tory pathway 

For some proteins translation progresses and finishes in the cytosol where the proteins are 

eventually released. This does not mean, however, that these peptides will remain in the 

cytosol. If there are signals on their peptide sequences that mediate direction to the 

mitochondria or nucleus these are recognized by receptor proteins on the appropriate 

organelle.  

For proteins that will enter the secretory pathway, the ribosomes that mediate their 

translation initially move freely in the cytoplasm and at a later point during protein 

synthesis become bound to the rough ER. This is mediated by an N-terminal ER signal 

peptide found in the newly synthesized polypeptide chain (Walter and Johnson, 1994). 

Within the ER lumen the proteins receive the necessary modifications in order to become 

functional, which involve the formation of disulfide bonds, glycosylation (Kornfeld and 

Kornfeld, 1985; Marth, 1996), proteolytic cleavage of propeptides and folding (Martoglio 
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and Dobberstein, 1998). At specific ER exit sites the proteins are packaged in transport 

vesicles composed of the coat protein II (COPII) (Barlowe, 1998) which subsequently fuse 

to form the ERGIC (Hauri and Schweizer, 1992; Saraste and Kuismanen, 1992). At the 

ERGIC the protein transportation can be bidirectional (Figure 4): there are the proteins 

in the COPII vesicles that move along the secretory pathway towards the Golgi 

compartment (anterograde transport) but there is also retrograde transportation of the 

ER recycling proteins packaged within the differently coated COPI vesicles that move 

from the Golgi towards the ER (Warren and Mellman, 1999; Aridor et al., 1995). 

Whether the proteins will follow the anterograde or retrograde route depends on signals 

existing in their peptide sequence (Kuehn and Schekman, 1997). If no such signals can be 

identified the peptides are secreted. After having arrived at the ERGIC the encapsulated 

proteins move to the cis-Golgi cisternae, from which they then move across the Golgi 

stack along membrane tubules (Thyberg and Moskalewski, 1999). Enzymes residing in 

the Golgi apparatus are responsible for the further modification of the travelling proteins, 

with the major type of modification being glycosylation. It is these modifications that 

provide the signals that determine the proteins’ final destination in the cell. The final 

sorting of the proteins takes place in the trans-Golgi (TGN) cisterna, where proteins with 

the same signals are grouped together in order to be targeted to the same intracellular 

location. The TGN subsequently buds off into clathrin coated vesicles that migrate to 

their final destination, such as the PM, the lysosomes or the endosomes. The adaptor 

complex molecules that recognize the transport vesicles determine the route that will be 

followed towards the final destination (van Vliet et al., 2003). One option is targeting via 

the direct route, which involves transportation from the TGN to the early and late 

endosomes and finally the lysosomes. The second route is the indirect one, where the 

vesicles are targeted to the PM and from there enter the endocytic pathway that will lead 

them to the final destination. 
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Figure 4. Schematic representation of the secretory and endocytic pathways. The COPI and COPII 

coated vesicles are shown as red and blue circles, respectively. The clathrin coated transport vesicles are 

shown as purple pentagons. The name of each organelle is given either in the upper part of the figure or 

beside the respective structures. Anterograde and retrograde transports are depicted with the black arrows. 

The figure was produced using Servier Medical Art (http://www.servier.com/servier-medical-

art/powerpoint-image-bank).  

 

2.6.8.2  The endocyt i c  pathway 

The endocytic pathway is used for the uptake of dissolved solutes, macromolecules and 

other material from the extracellular space. The molecules to be internalized bind to 

membrane receptors found at specific coated sites along the PM. Following this 

interaction, clathrin-coated vesicles bud off from the PM and enter the endocytic 

pathway. The first stop are the early endosomes with which the transport vesicles fuse. 

The acidic pH (pH = 6.0-6.8) of the early endosomes causes the cargo and the receptors 
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to dissociate (Mellman et al., 1986). The receptors are then packaged in recycling vesicles 

that are transported back to the PM where they can be reused. The second stop is the late 

endosomes (pH = 5.5) where the even lower pH mediates the beginning of the breaking 

down of the material that has been internalized. This process is finalized and completed 

in the lysosomes (pH = 4.6), the third destination of the endocytic pathway. Delivery of 

the late endosomal contents to the lysosomes can be achieved in two ways. The first 

involves the fusion of the late endosomes with the lysosomes that results in the formation 

of a hybrid organelle, and the second the formation of a transient pore that connects the 

two organelles which remain intact in this case, a process called kiss-and-run fusion (Luzio 

et al., 2005). In addition to the digestion of exogenous macromolecules and material the 

endogenous pathway can also perform protein sorting functions. These involve the 

packaging of proteins in endosome-derived recycling or secretory vesicles that pinch off 

from the endosomes and are targeted either back to the PM or to the TGN where the 

endocytic and secretory pathways converge (Figure 4). 

 

2.6.8.3  Lysosomal target ing 

There are two major pathways through which the lysosomal proteins are transported to 

their target organelle. Soluble lysosomal hydrolases usually follow the Man6P-dependent 

pathway, while the lysosomal transmembrane proteins are more likely to follow the 

Man6P-independent pathway. 

The Man6P-independent pathway: In transmembrane proteins destined to the lysosomes 

targeting is mediated by short, linear arrays of amino acid residues consisting of the 

sorting signals, usually situated at the cytosolic domains of the peptides (Bonifacino and 

Traub, 2003). Two major classes of lysosomal sorting signals are recognized today, known 

as “tyrosine-based” and “dileucine-based” motifs. The “tyrosine-based” signals conform 

to the consensus motif YXXΦ, in which Y is a tyrosine, X can be any amino acid and Φ 

is an amino acid with a bulky hydrophobic side chain (Canfield et al., 1991). The 

“dileucine-based” motifs can be either [DE]XXXL[IL] or DXXLL (Bonifacino and 

Traub, 2003). These sorting signals are recognized by clathrin adoptor protein (AP) 
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complexes that bind directly to the cytoplasmic tails containing these motifs, selecting the 

protein for inclusion into the appropriate transport vesicles (Pearse et al., 1988). AP 

complexes are heterotetrameric adaptor proteins (AP-1, AP-2, AP-3, and AP-4) and when 

in combination with the structural protein clathrin and various accessory factors form the 

clathrin coats (Bonifacino and Traub, 2003). AP-2 complexes are associated with 

transport vesicles that participate in endocytosis from the PM. The AP-1 complex has 

been localized to the TGN and mediates TGN to endosome transport (Reusch et al., 

2002). The AP-3 complex on the other hand is implicated in endosome to lysosome, 

TGN to endosome or TGN to lysosome protein transport (Reusch et al., 2002). 

The Man6P-dependent pathway: For the soluble lysosomal proteins targeting is mediated 

by specific modifications received while these hydrolases move across the Golgi 

apparatus. More specifically Man6P groups are added to the lysosomal hydrolases in a 

two step process involving the enzymes N-acetylglucosamine-1-phosphotransferase and 

N-acetylglucosamine-1-phosphodiester-α-Ν-acetylglucosaminidase (Little et al., 1987; 

Reitman and Kornfeld, 1981). Upon arrival to the TGN the proteins carrying Man6P 

moieties are recognized by MPRs. The MPRs can be either small (~46 kilodaltons (kDa) 

and dependent on divalent cations (cation-dependent; CD_MPRs) in order to efficiently 

recognize the Man6P groups, or bigger (~300 kDa) and cation-independent (CI_MPRs) 

(Hofllack and Kornfeld, 1985a; Hofllack and Kornfeld, 1985b). Once the MPRs have 

recognized the soluble lysosomal proteins the complexes are recognized by AP-1 

complexes and golgi-localizing γ-adaptin ear homology domain ARF-binding proteins 

(GGAs), mediating packaging in transport vesicles coated by clathrin (le Borgne et al., 

1996; Meyer et al., 2000; Puertollano et al., 2001). Subsequently the vesicles follow the 

direct intracellular route towards the lysosomes. Before delivery to the lysosomes the 

complexes pass from the endosomes, in the lumenal acidic pH of which the protein-

receptor complexes dissociate, and the MPRs are transported back to the TGN.
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3. AIMS OF THE STUDY 

 

 

This thesis aimed to dissect the molecular genetic background underlying childhood onset 

PME in a cohort of 250 patients, with a particular interest in the NCL disease subtypes. 

Towards this, the specific aims were: 

Aim I: To update the mutational spectrum underlying NCLs and provide clinically 

significant genotype-phenotype correlations for the different NCL subtypes. 

Aim II: To evaluate the role of MFSD8 as a disease-causing gene in patients from 

populations other than the Turkish population. 

Aim III: To obtain insight into the primary functional properties of MFSD8 by 

characterizing its cellular and tissue expression pattern and by elucidating the sorting 

mechanisms that mediate lysosomal targeting. 

Aim IV: To identify novel loci associated with childhood onset PME and identify the 

disease-causing gene(s). 
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4. MATERIALS AND METHODS 

 

 

4.1 Patients and controls 

Altogether 250 patients from 236 families were evaluated in this study (Table 4 and 

Figure 5). The majority of the subjects (185 patients from 178 families) were of Turkish 

origin. The study material was received from clinical collaborators either as blood or 

DNA samples. Samples from parents were available for 43 cases. A fibroblast cell line for 

RNA extraction was available from one of the patients and a control individual. All 

samples were collected after informed consent was obtained from the patients or their 

legal guardians, in accordance with the legislation governing local institutional review 

boards.  

Table 4. List of patients screened for this thesis 

Ethnicity 
Number of 

patients 
Number of 

families 
Albania 1 1 
Bulgaria 2 2 
Cook Islands 1 1 
Croatia 3 3 
Czech Republic 6 6 
Denmark 1 1 
Finland 1 1 
Greece 1 1 
India 8 6 
Italy 2 2 
Mexico 1 1 
Morocco 2 1 
New Zealand 3 2 
Pakistan 7 5 
Poland 3 3 
Roma from the former Czechoslovakia 17 16 
Sweden 1 1 
The Netherlands 1 1 
Turkish 185 178 
UK 3 3 
USA 1 1 
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The majority of patients had disease onset between 1-4 years of age. All presented with 

epileptic seizures and psychomotor deterioration. EM analysis for the detection of storage 

material was available for 30 patients. A total of 26 samples (25 patients and one healthy 

family member) were genotyped in a SNP genomewide scan for identification of novel 

PME-associated genes (study IV; Figure 5). Selection of the families to be included in this 

study was based on consanguinity of the marriages and how informative the family 

structure was. Skin biopsies for EM analysis were available for three of these patients. 

 

 

Figure 5. Families and sporadic patients studied throughout this thesis 
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Three sets of healthy control individuals were used in this study: 

• Set 1: 160 Turkish individuals 

• Set 2: 96 individuals from the Centre d’ Etude du Polymorphisme Humain 

(CEPH: www.ceph.bio.fr). 

• Set 3: 100 Indian control individuals. 

For the RT-PCR analyses total RNA was extracted from a control fibroblast cell line. 

 

4.2 Methods used 

A list of the methods used in this thesis is given in Table 5. A short description of each of 

the techniques is also presented herein. Detailed descriptions of the protocols and 

methodology can be retrieved from the original publications. 

  

4.2.1 Nucleic acids extraction and purification (I, II, IV) 

Genomic DNA was extracted from the leukocytes of EDTA-blood samples (Puregene 

DNA Purification kit, Gentra Systems) according to the instructions provided by the 

manufacturer. Total RNA was extracted from fibroblast cells using the RNeasy mini kit 

(Qiagen). Concentrations of the extracted nucleic acids were determined using a 

spectrophotometer (GeneQuant Pro, Amersham Biosciences), or a NanoDrop ND-1000 

(Thermo Fisher Scientific). 
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Table 5. List of methods used during this thesis 

Method Original publication 

Cell culture II, III, IV 

Co-immunoprecipitation III 

Confocal microscopy III, IV 

Deglycosylation assay III 

Direct sequencing analyses I, II, III, IV 

DNA extraction I, II, IV 

Genomewide SNP scan IV 

GST pulldown III 

Haplotype analysis I, II, IV 

Homozygosity mapping IV 

Immunofluorescence microscopy II, III, IV 

Immunofluorescence staining(s) II, III, IV 

Immunohistochemistry IV 

In silico analyses I, II, III, IV 

In situ hybridization III 

Linkage analysis II, IV 

Microsatellite genotyping II, IV 

Mutation analysis I, II, III, IV 

Polymerase chain reaction (PCR) I, II, III, IV 

Real-time PCR III 

Recombinant DNA techniques (molecular cloning) II, III, IV 

Reverse transcriptase PCR (RT-PCR) II, III 

RNA extraction from fibroblasts II 

Site-directed mutagenesis II, III, IV 

Targeted next-generation sequencing Not published 

Transient transfections II, III, IV 

Western blot analysis III, IV 
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4.2.2 PCR-based amplification and mutation analysis (I-IV) 

The coding exons and exon-intron boundaries of the genes evaluated for mutations were 

PCR-amplified using standard techniques. PCR primers were designed with the 

ExonPrimer (http://ihg.gsf.de/ihg/ExonPrimer.html) and/or Primer3 

(http://frodo.wi.mit.edu/primer3/) programs. The amplified PCR products were 

prepared with ExoSAP-IT (USB, Cleveland) and sequenced using the BigDye 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and an ABI 3730 DNA 

Analyzer, or an ABI Prism 3100-Avant (Applied Biosystems). Sequence chromatograms 

were visualized with Sequencher 4.8 (Gene Codes Corporation). 

In RT-PCR, extracted RNA was reverse transcribed using the M-MLV Reverse 

Transcriptase (Promega, Madison). For evaluation of the splicing patterns (study I) the 

cDNA portions of interest were amplified with exonic primers and sequenced. For real-

time RT-PCR experiments cDNAs were labeled with Power SUBR Green PCR Master 

Mix (Applied Biosystems) and quantified using the comparative threshold cycle method. 

 

4.2.3 Microsatellite genotyping (II) 

Three or four fluorescently-labeled microsatellite markers were PCR-amplified around 

each of the CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8, and CLN10 loci (as described 

in Siintola et al., 2005). The results were analyzed with GENEMAPPER v4.0 software 

(Applied Biosystems). The CEPH 1347-2 sample was used as a reference for the allele 

sizes that were estimated. The haplotypes were constructed manually and homozygosity 

over each locus was evaluated. 

 

4.2.4 Genomewide SNP scan and next-generation sequencing (IV and 

unpublished) 

The genomewide analysis was performed at the Institute for Molecular Medicine Finland 

(FIMM) using the Human610-Quad DNA Analysis BeadChip SNP array (Illumina), 

featuring 550,000 SNPs per genotyped sample, as specified by manufacturer’s 
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instructions. All patients had a genotype success rate greater that 95%, which was set as 

the threshold of acceptance and thus all were included in subsequent analyses. 

Targeted next-generation sequencing was performed using the NimbleGen Sequence 

Capture array protocol, followed by subsequent Illumina re-sequencing of the coding and 

flanking intronic regions. Altogether eight chromosomal loci spanning a genomic region 

of 27,7 Mb were mapped. To screen the 484 genes and approximately 5,000 coding 

exons located within the candidate regions a total of 5,900,970 capture probes were 

custom designed according to the NimbleGen Sequence Capture Microarrays protocol 

(Roche). All designed probes were reviewed using the UCSC Genome browser 

(http://genome.ucsc.edu) to verify coverage of the regions of interest. Next-generation 

sequencing was performed at the Wellcome Trust Sanger Institute in Hixton, Cambridge. 

 

4.2.5 Homozygosity mapping (IV) 

The genomewide SNP data was analyzed for homozygosity mapping using the PLINK 

program (v1.06). Only windows of 500 kb of uninterrupted homozygosity were 

considered, where a maximum of 5 SNP calls were allowed to be missing and 2 to be 

heterozygous per sample. The patients were then grouped based on whether they shared 

homozygosity runs over the genome to determine the candidate loci. Illumina’s 

Beadstudio-suite was used as a second method to visualize and confirm long homozygous 

regions in the patients genotyped.  

 

4.2.6 Expression constructs and site-directed mutagenesis (II, III, IV) 

Two tagged MFSD8 constructs were used for localization studies. The first comprised 

HAMFSD8 (described by Siintola et al., 2007), and the second hCLN7, generated by PCR 

amplifying the full-length MFSD8 and cloning it in the pEGFP-C2 expression vector C-

terminally to the tag (Clontech). Similar to hCLN7, an EGFP tagged construct of mouse 

Mfsd8 was created (mCLN7). 
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In study III two sets of CD8 chimeric proteins were constructed to address trafficking of 

MFSD8. First the N-terminal (p.1-40) and C-terminal (p.504-518) cytosolic tails of 

MFSD8 were amplified from a human brain cDNA library and cloned in a CD8-

containing pBluescript vector (CD8-pBluescript), replacing the cytosolic segment of CD8, 

generating the CD8-CLN7Nterm and CD8-CLN7Cterm constructs, respectively, which 

were then subcloned into a pcDNA3.1(+) expression vector. For the CLN7Nterm-

CLN3LIAA+MX9G chimera the traffic deficient full-length CLN3 (CLN3LIAA+ 

MX9G; described by Kyttälä et al., 2004) was used as a PCR template to amplify the 

p.39-438 portion of CLN3 (CLN3dm-Δ1-38), which was cloned in the pcDNA3.1 

plasmid. In a second cloning step the MFSD8 N-terminus (p.1-40) was PCR amplified 

and cloned in-frame at the N-terminus of CLN3dm-Δ1-38, giving rise to a chimera 

having the N-terminus of CLN3 replaced by that of MFSD8 (CLN7-CLN3dm-Δ1-38).  

For the production of the GST fusion proteins the MFSD8 N-terminus (p.1-40) and the 

C-terminus (p.504-518) were cloned into a pGEX4T-1 vector (GST-CLN7Nterm and 

GST-CLN7Cterm respectively; Amersham Biosciences). 

The complete open reading frame of KCTD7 was cloned in-frame into the aminoterminal 

hemagglutinin (HA) tag containing pAHC expression vector (a pCI-neo derivative; kindly 

provided by Prof. Tomi Mäkelä, University of Helsinki, Finland) to create the 

wtHAKCTD7 construct. A second construct was created by cloning the KCTD7 cDNA 5’ 

to the HA-tag, generating the wtKCTD7HA. 

The mutations introduced in the template constructs described are presented in Table 6. 

All mutations were generated using the QuickChange site-directed mutagenesis kit 

(Stratagene), according to the manufacturer’s instructions. All constructs were verified by 

sequence analysis. 
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Table 6. Mutant constructs used for cellular work 

Template construct 
Mutation 

introduced 
Mutant construct generated Use Study 

wtHAMFSD8 p.Arg139His HAMFSD8p.R139H Localization I 
wtHAMFSD8 p.Thr294Lys HAMFSD8p.T294K Localization I 
wtHAMFSD8 p.Arg465Trp HAMFSD8p.R465T Localization I 
wtHAMFSD8 p.Leu13Ala HAMFSD8p.L13A Trafficking II 
wtHAMFSD8 p.Ile25Ala HAMFSD8p.I25A Trafficking II 
wtHAMFSD8 p.Ile444Ala HAMFSD8p.I444A Trafficking II 
wtHAMFSD8 p.Tyr503Ala HAMFSD8p.Y503A Trafficking II 
wtHAMFSD8 p.Tyr513Ala HAMFSD8p.Y513A Trafficking II 
HAMFSD8p.L13A p.Tyr513Ala HAMFSD8p.L13A+Y513A Trafficking II 
HAMFSD8p.L13A+Y513A p.Ile25Ala HAMFSD8p.L13A+I25A+Y513A Trafficking II 
HAMFSD8p.L13A+Y513A p.Ile444Ala HAMFSD8p.L13A+I444A+Y513A Trafficking II 
HAMFSD8p.L13A+Y513A p.Tyr503Ala HAMFSD8p.L13A+Y503A+Y513A Trafficking II 
hCLN7 p.Gly52Arg hCLN7p.G52R Trafficking II 
hCLN7 p.Tyr121Cys hCLN7p.Y121C Trafficking II 
hCLN7 p.Ala157Pro hCLN7p.A157P Trafficking II 
hCLN7 p.Pro412Leu hCLN7p.P412L Trafficking II 
hCLN7 p.Pro447Leu hCLN7p.P447L Trafficking II 
hCLN7 p.Leu13_Leu14 

delinsAlaAla 
hCLN7p.LL13/14AA Trafficking II 

hCLN7 p.Tyr503Ala hCLN7p.Y503A Trafficking II 
hCLN7 p.Tyr513Ala hCLN7p.Y513A Trafficking II 
hCLN7p.LL13/14AA p.Tyr503Ala hCLN7p.LL13/14AA+Y503A Trafficking II 
hCLN7p.LL13/14AA p.Tyr513Ala hCLN7p.LL13/14AA+Y513A Trafficking II 
hCLN7 p.Asn171Gln hCLN7p.N171Q Glycosylation II 
hCLN7 p.Asn371Gln hCLN7p.N371Q Glycosylation II 
hCLN7 p.Asn376Gln hCLN7p.N376Q Glycosylation II 
hCLN7p.N371Q p.Asn376Gln hCLN7p.N371Q+N376Q Glycosylation II 

mCLN7 
p.Asn372Gln+ 
p.Asn377Gln 

mCLN7p.N372Q+N377Q Glycosylation II 

mCLN7p.N372Q+N377Q p.Asn389Gln mCLN7p.N372Q+N377Q+N389Q Glycosylation II 

mCLN7 
p.Leu13_Leu14 
delinsAlaAla 

mCLN7p.LL13/14AA Trafficking II 

CD8-CLN7Cterm p.Tyr513Ala CD8-CLN7Cterm_p.Y513A Trafficking II 
CLN7- CLN3dm-Δ1-38 p.Leu13Ala CLN7p.L13A-CLN3dm-Δ1-38 Trafficking II 
GST-CLN7Nterm p.Leu13Ala GST-CLN7Nterm_p.L13A GST pull-

down 
II 

wtHAKCTD7 p.Arg94Trp HAKCTD7p.R94W Localization IV 
wtHAKCTD7 p.Asp115Tyr HAKCTD7p.D115Y Localization IV 
wtHAKCTD7 p.Asn273Ile HAKCTD7p.N273I Localization IV 
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4.2.7 Cell culture and transfections (II, III, IV) 

Human cervical cancer cells (HeLa), african green monkey kidney cells (COS-1), and 

human embryonic kidney cells (HEK293) were cultured in Dulbecco’s modified Eagle 

medium (DMEM; Gibco) and supplemented with 10% fetal calf serum (FCS), antibiotics 

and 1xGlutaMAX (Gibco). Mouse fibroblasts deficient for subunits of the AP-1 (Δµ1Α) or 

AP3 adaptor protein complexes (ΑΡ3-βΑ) were cultivated in DMEM supplemented with 

20% FCS, and antibiotics. BHK cells were cultured in Glasgow minimal essential 

medium (GMEM; Gibco), supplemented with 10% FCS, antibiotics, 1xGlutaMAX, and 

5% tryptose phosphate broth (Sigma-Aldrich). Cells were trypsinized and plated on 6-well 

plates 24 hours (h) prior to transfection. The cells were transfected with 1 µg of wild-type 

or mutant constructs using either the FuGENE 6 (Roche), or Lipofectamine 2000 

(Invitrogen) transfection reagents, according to the manufacturer’s guidelines. Whenever 

inhibition of protein production was required 50 µg/ml cyclohexamide (Chx) was added 

to the cells 2 h prior to fixation. The cells were fixed 18 h post transfection either with 4% 

paraformaldehyde (PFA) for 15 minutes (min) or with 100% ethanol (EtOH) for 5 min. 

To obtain the cultures of embryonic hippocampal neurons the hippocampi of SV129-J 

(Jackson Laboratories) embryos were dissected at embryonic day 14 (E14) or 17-18 (E17-

18). The tissue was trypsinized and dissociated mechanically with a Pasteur pipette and 

the cells plated in 6-well poly-d-lysine (Sigma)-coated plates containing complete 

Neurobasal medium supplemented with antibiotics, 1xB27 (Gibco), and glutamine. 

 

4.2.8 Immunofluorescence stainings (IF) and microscopy (II, III, IV) 

After fixation, the cells were blocked and permeabilized by incubating them in 

phosphate-buffered saline (PBS) supplemented with 0.2% saponin and 0.5% bovine 

serum albumin (BSA), or PBS supplemented with 0.1% Triton X-100 and 0.5% BSA, for 

30 min at room temperature (RT). For IF primary antibody solutions were prepared in 

PBS (0.2% saponin/0.5% BSA or 0.1% Triton X-100/0.5% BSA). Fixed cells were 

incubated with the primary antibodies (Table 7) overnight or for 1 h at RT, after which 

excess antibodies were removed by washing the cells three times with PBS. Secondary 

antibodies (Table 7) diluted in PBS (0.2% saponin/0.5% BSA or 0.1% Triton X-
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100/0.5% BSA) were subsequently applied to the cells for 1 h at RT. After washing off 

the secondary antibodies with three PBS washes, the coverslips were mounted on object 

glasses using Gel Mount (Sigma-Aldrich) or GluoromountG (Southern Biotechnology 

Associates). 

To visualize the immunostainings an Axioplan 2 microscope, a confocal Zeiss LSM 510 

Meta microscope, a Leica DMR confocal microscope, or a Nikon Eclipse TE-2000 

microscope was used, each of which was equipped with a CCD camera.  

 

4.2.9 Western blot (III, IV) 

Samples for western blot analyses were prepared by lysing the cells in ice cold 1x lysis 

buffer supplemented with protease inhibitors. The cell lysates were collected after having 

scraped the cells, left to rotate at +4°C for 10 min, and centrifuged to separate the soluble 

proteins from the membranes and cell debris. To obtain the cell lysates from mouse 

cerebellum and liver the tissues were homogenized for 30 min in lysis buffer using a 

FastPrep (FP120) or a Beckman TLA 100.3 rotor, respectively. The protein 

concentrations were determined using the Bradford assay according to the instructions 

provided by the manufacturer. Equalized protein concentrations were prepared by 

adding 3x sample buffer containing a reducing agent (β-mercaptoethanol or dithiothreitol 

(DTT)) required for size separation of proteins and the denaturing detergent sodium 

dodecyl sulfate (SDS). Following sample preparation the proteins were heated at 95°C for 

5 min and loaded on 14% SDS-PAGE gels. Separation of the bands was achieved by 

running the gel at 100 V for 2.5-3 h after which they were transferred onto a PVDF 

membrane (Millipore) using blotting buffer. The membranes were blocked overnight at 

4°C and incubated with primary and secondary antibodies for 1 h at RT (Table 7). The 

antigens were detected using enhanced chemiluminescence (ECL) (Amersham 

Biosciences).  
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Table 7. Antibodies used in IF, western blot, and immunohistochemistry analyses 

Antibody Organism Dilution Company / Reference Target Study 

Immunofluorescence experiments 
H4A3 mouse 1:100 Developmental Studies 

Hybridoma Bank 
Lysosomes I, II, IV 

a-HA rabbit 1:500 Santa Cruz Biotechnology HA tag I, II, IV 
a-HA mouse 1:250 Santa Cruz Biotechnology  IV 
a-CD8 mouse 1:200  Plasma membrane II, IV 
m385 rabbit 1:300 Luiro et al., 2001 CLN3 aa 242-258 II 
a-GFP mouse 1:1000 Roche Molecular 

Biochemocals 
GFP tag II 

a-AGA rabbit 1:400 Halila et al., 1991 Lysosomes II 
1D4B rat 1:100 Developmental Studies 

Hybridoma Bank 
Lysosomes II 

1D4B rat 1:500 BD Biosciences Lysosomes II 
a-KCTD7 rabbit 1:500 Sigma-Aldrich KCTD7 aa 2-51 IV 
a-CTSD rabbit 1:100 Dako Lysosomes IV 
EEA1 mouse 1:100 BD Biosciences Endosomes IV 
Giantin rabbit 1:1000 BioSite Golgi IV 
PDI mouse 1:50 Stressgen ER IV 
β-tubulin mouse 1:200 Sigma-Aldrich Cytoskeleton IV 
a-mouse Cy2 donkey 1:200 Jackson ImmunoResearch Secondary Ab I, II 
a-rabbit Cy3 goat 1:200 Jackson ImmunoResearch Secondary Ab I, II 
a-mouse Alexa 488  1:200 Molecular Probes Secondary Ab IV 
a-rabbit Alexa 594  1:200 Molecular Probes Secondary Ab IV 

Western blot 
AP-1γ mouse  BD Biosciences AP-1 II 
AP-2α mouse  BD Biosciences AP-2 II 
δ-adaptin mouse  Peden et al., 2001 AP-3 II 
a-KCTD7 rabbit 1:1000 Sigma-Aldrich KCTD7 aa 2-51 IV 
β-tubulin mouse 1:1000 Sigma-Aldrich Load control IV 
HRP-actin  1:1000 Cell Signaling Load control IV 
HRP a-mouse  1:3000 Dako Secondary Ab IV 
HRP a-rabbit  1:3000 Dako Secondary Ab IV 

Immunohistochemistry 
a-KCTD7 rabbit 1:500 Sigma-Aldrich KCTD7 aa 2-51 IV 
CDC47 mouse 1:100 NeoMarkers Neuronal cell 

progenitors 
IV 

GFAP mouse 1:100 Dako Astrocytes IV 
F4/80 mouse 1:50 Serotec Microglia IV 
NeuN mouse 1:100 Chemicon Neurons IV 
PV mouse 1:1000 Swant GABAergic neurons IV 
SYP  1:200 Dako Pre-synapses IV 
PSD-95  1:100 Transduction Laboratories Post-synapses IV 
GABA  1:500 Synaptic Systems GABA transporter IV 
a-mouse Alexa 488  1:200 Molecular Probes Secondary Ab IV 
a-rabbit Alexa 594  1:200 Molecular Probes Secondary Ab IV 
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4.2.10 Co-immunoprecipitation assays (III) 

For the GST pull-down experiments the recombinant GST fusion-tagged proteins 

described in section 4.2.6. were produced in E. coli BL21 bacteria. The bacterial pellets 

were lysed with STE buffer supplemented with lysozyme, sarcosyl and protease inhibitors, 

sonicated, and ultracentrifuged at 10,000 rpm for 10 min at 4°C and supplementated 

with 2% Triton X-100 to release the proteins. The fusion proteins were affinity-purified 

by binding to glutathione-Sepharose 4B beads overnight at 4°C (Amersham Biosciences), 

and subsequently incubated with a HeLa or mouse liver cell lysate for 4 h at 4°C.  

In biotinylation experiments HEK293 cells were biotinylated by incubation with sulfo-

NHS-SS-biotin (Pierce) twice for 20 min. PBS supplemented with 100 mM glycine was 

used to remove the unbound biotin after which the cells were lysed as described in section 

4.2.9. The soluble proteins collected were affinity-purified by incubation with 

streptavidin-agarose beads (Fluka) for 2 h at 4°C.  

Complexes of bead-bait proteins were eluted by adding 2x sample buffer, after which the 

samples were separated by 10% SDS-PAGE and analyzed by western blotting using 

appropriate antibodies (Table 7). 

 

4.2.11 Deglycosylation assay (III) 

Cell lysates were collected from HEK293 cells transfected with hCLN7p.N171Q, 

hCLN7p.N371Q, hCLN7p.N376Q, hCLN7p.N371Q+N376Q, 

mCLN7p.N372Q+N377Q, and mCLN7p.N372Q+N377Q+N389Q (Table 6). Each of 

the cell lysates was subsequently incubated overnight at 4°C with 1250 U peptide N-

glycosidase F (PNGaseF) (New England Biolabs) to remove mannose N-glycans. After 

PNGaseF treatment the samples were separated in 10% SDS-PAGE gels and detected 

with antibodies targeted against the green fluorescent protein (GFP) tag of hCLN7 and 

mCLN7. 
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4.2.12 Immunohistochemistry (III, IV) 

Paraffin embedded sagittal sections (5 µm) of P5, P7, P10, P14, 1 month, 2 month, and 4 

month old SV129-J mice (Jackson laboratories) were deparaffinized by incubation in 

xylene and rehydrated by incubation in decreasing series of EtOH solutions. The tissue 

endogenous antigens were retrieved through 10 min heating at 95°C in 10 mM citrate 

buffer. Incubation of the sections with PBS supplemented with 1% FCS for 1 h at RT 

was used to block unspecific antibody binding. Primary antibody solutions were prepared 

in PBS (1% FCS) and left to incubate with the sections overnight at 4°C. Secondary 

antibodies were prepared in PBS (1% FCS) and applied for 1 h at RT. Prior to mounting 

with Gel Mount (Sigma-Aldrich), the sections were washed with dH2O to remove the 

PBS salts. The stainings were visualized with an Axioplan 2 microscope and the images 

were obtained using AxioVision 3.1 (Zeiss). 

 

4.2.13 In situ hybridization (III) 

Rat brains were removed and fixed in isopentane at -30°C. A cryostat was used to obtain 

sagittal and coronal sections at -20°C. The sections were postfixed with 3.7% PFA, 

dehydrated by incubation with increasing series of EtOH solutions and allowed to air dry. 

A mix of four [35S]dATP labeled antisense oligonucleotides suspended in hybridization 

medium (Helios Biosciences, France) was applied to the sections overnight in a 42°C 

incubator. The next day the slides were washed, dried, and exposed to BAS-TR Fuji 

Imaging screens (Fuj Film Photo Co.) for 14 days. The screens were scanned using a 

BAS-5000 Fuji Bioimaging Analyzer. 

 

4.2.14 In silico analyses (I-IV) 

The genome browsers used to retrieve the positions and information on the genes and to 

determine the positional candidates within the candidate loci were the UCSC Human 

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway), the Ensembl Human 

Genome Browser (http://www.ensembl.org/Homo_sapiens/Info/Index), and the NCBI 

Gene Browser (http://www.ncbi.nlm.nih.gov/gene/).  
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Alignment of the primer oligos to the human genome to ensure product specificity was 

performed with UCSC Blat (http://genome.ucsc.edu/cgi-

bin/hgBlat?command=start&org=Human&db=hg19&hgsid=206980099). Identification 

of protein paralogs and/or orthologs was done with NCBI protein-protein BLAST 

(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi). Nucleotide or peptide sequences were 

aligned either with the MAFFT v5.8 programme (http://align.bmr.kyushu-

u.ac.jp/mafft/online/server/) or with ClustalX (http://www.clustal.org/clustal2/). 

Alternative transcript variants were visualized with AceView 

(http://www.ncbi.nlm.nih.gov/). 

Prediction programs PolyPhen (http://genetics.bwh.harvard.edu/pph/), PolyPhen-2 

(http://genetics.bwh.harvard.edu/pph2/), SNPs3D (http://snps3d.org/), and SIFT 

(http://blocks.fhcrc.org/sift/SIFT.html) were used to evaluate the impact of the missense 

mutations identified on the resultant peptides. 

Putative sorting signals, glycosylation sites, and phosphorylation sites were predicted by 

the programes SOSUI (http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html), 

PSORT (http://psort.hgc.jp/) and PhosphoSitePlus 

(http://www.phosphosite.org/homeAction.do), respectively.  
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5. RESULTS AND DISCUSSION 

 

 

5.1 Mutations in six NCL genes (I, II) 

In order to provide molecular genetic diagnosis to the patients included in this study, each 

was screened for mutations in PPT1, TPP1, CLN3, CLN5, CLN6, MFSD8, CLN8 and 

CTSD. This comprised an essential step to dissect the genetic defects in the patients with 

no mutations in the known NCL genes and identify novel childhood onset symptomatic 

epilepsy genes in study IV. 

A total of 35 novel mutations were identified in PPT1, TPP1, CLN3, CLN5, CLN6, and 

CLN8. (Table 8). The 14 novel mutations detected in MFSD8 alone are described in detail 

in section 5.2.1. (Table 9). An additional 56 mutations (described in detail in the original 

publication of study I), were contributed by collaborators. When these newly described 

mutations are combined with the 260 previously published mutations the total number of 

known NCL-causing mutations rises to a total of 364. The novel mutations are mostly 

evenly spaced across the coding and splice junction sequence of each of the genes 

evaluated, suggesting that no obvious mutation hot spots exist. The exception was TPP1, 

where the region spanning the first two coding exons was reported to be mutation free. It 

was hypothesized that since this region is not present in the mature peptide due to 

cleavage, any mutations occurring within it would not have a relevant impact on the 

polypeptide produced (Zhong et al., 2000). The splice-site affecting mutation c.17+1G>C 

in intron 1, identified in study II, together with mutations c.18-3C>G and c.37dupC 

identified by collaborators in intron 1 and exon 2, are contrary to the hypothesis of TPP1 

exons 1 and 2 being mutation-free. It is noteworthy that all three mutations are predicted 

to either have an effect on the downstream sequence producing frameshifts, or result in 

aberrant proteins that are likely to be targeted for nonsense-mediated decay. In light of 

these findings, it can be concluded that TPP1 missense mutations would possibly be 

tolerated and not cause the disease phenotype because these single amino acid changes 

would not be present in the mature peptide.  
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Table 8. Mutations identified in PPT1, TPP1, CLN3, CLN5, CLN6, and CLN8 in studies I and II 

Position 
Nucleotide 
change 

Amino acid 
change 

Number 
of 
patients 

Ethnicity Study 

PPT1 
Exon 1 c.114G>T p.Trp38Cys 3 Turkey I, II 
Exon 4 c.413C>T p.Ser138Leu 1 Turkey I 
Exon 6 c.538dupC p.Leu180ProfsX9 1 Turkey I 
Exon 6 c.566C>G p.Pro189Arg 1 Turkey I 

TPP1 
Intron 1 c.17+1G>C splice defect 1 Turkey II 
Exon 3 c.184T>A p.Ser62Thr 1 Turkey I 
Exon 5 c.497dupA p.His166GlnfsX22 1 Turkey I 
Exon 10 c.1204G>T p.Glu402X 2 Turkey I, II 
Exon 11 c.1444G>C p.Gly482Arg 1 Turkey II 
Exon 12 c.1497delT p.Gly501AlafsX18 1 Turkey I 

CLN3 
Intron 2 c.126-1G>A splice defect 1 Turkey I 
Exon 4 c.233_234insG p.Thr80AsnfsX12 1 Turkey I 
Exon 14 c.1067T>G p.Leu356Arg 1 Turkey unpublished 

CLN5 
Exon 1 c.61C>T p.Pro21Ser 1 Turkey I 
Exon 1 c.223T>C p.Trp75Arg 3 Turkey I 
Exon 3 c.524T>G p.Leu175X 1 Turkey I 
Exon 3 c.593T>C p.Leu198Pro 1 Turkey I 
Exon 4 c.726C>A p.Asn242Lys 2 Turkey I 

Exon 4 c.1026C>A p.Tyr342X 1 
Roma from the 
former 
Czechoslovakia 

II 

CLN6 
Exon 1 c.34G>A p.Ala12Thr 1 Turkey I 
Exon 1 c.49G>A p.Gly17Ser 1 Turkey I 
Exon 3 c.270C>G p.Asn90Lys 1 India I 
Exon 4 c.476C>T p.His157Arg 1 Turkey II 
Exon 5 c.516T>A p.Tyr172X 1 Turkey I 
Exon 6 c.557T>C p.Phe186Ser 1 Turkey I 
Exon 7 c.775G>A p.Gly259Ser 3 India I 

CLN8 
Exon 2 c.209G>A p.Arg70His 1 New Zealand I 
Exon 2 c.227A>G p.Gln76Arg 1 Turkey I 
Exon 2 c.320T>G p.Ile107Ser 1 Turkey I 
Exon 2 c.374A>G p.Asn125Ser 1 Turkey I 
Exon 2 c.415C>T p.His139Tyr 1 New Zealand I 
Exon 2 c.470A>G p.His157Arg 1 Turkey II 
Exon 3 c.637_639delTGG p.Trp213del 1 Turkey I 
Exon 3 c.661G>A p.Gly221Ser 1 Turkey I 
Exon 3 c.806A>T p.Glu269Val 1 Turkey I 

 

The majority of the novel mutations are private, being identified in a single family. The 

latter has diagnostic implications since it emphasizes that the design of a diagnostic test 
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suitable for several patients within one or among several populations is not possible. 

Instead, molecular genetic testing involving sequencing of the complete region of each of 

the genes associated with the suspected subtype remains the only possibility to establish a 

clinical diagnosis.  

 

5.2 Genetic and molecular characterization of MFSD8 , the gene 
defective in CLN7 disease 

Prior to this thesis, a homozygosity mapping approach in a group of mainly Turkish 

patients identified mutations in MFSD8, accounting for the CLN7 disease that is a variant 

form of LINCL (Siintola et al., 2007). The encoded peptide was reported to be a member 

of the MFS based on sequence homology analysis, and to be a putative transmembrane 

protein localizing to the lysosomes. 

 

5.2.1 Mutations identified in MFSD8 (I, II, III) 

Altogether 211 patients from 200 families were screened for mutations in MFSD8. Of 

these 146 were Turkish and 65 of various other ethnic origins. In 25 patients (nine 

Turkish and 16 Roma) prior haplotype analysis indicated homozygosity over the MFSD8 

locus, whereas the remaining patients were screened without prior knowledge of the 

haplotype status. A total of 14 novel mutations were identified in 36 patients (Table 9; 

Figure 6). Seven of the novel mutations comprise single nucleotide changes resulting in 

missense mutations (c.416G>A; p.Arg139His, c.479C>A; p.Thr160Asn, c.479C>T; 

p.Thr160Ile, c.881C>A; p.Thr294Lys, c.1393C>T; p.Arg465Trp, c.1394G>A; 

p.Arg465Gln, and c.1408A>G; p.Met470Val). One in-frame deletion/insertion mutation 

of two bp (c.468_469delinsCC) results in the in-frame substitution p.Ala157Pro. One 

frameshift-causing mutation involving the deletion of 16 bp 

(c.627_643delGTATACAACACCAGTTT; p.Met209IlefsX3) was identified in exon 7. 

The two mutations c.103C>T, and c.1420C>T introduce premature termination codons 

producing the residue changes p.Arg35X, and p.Gln474X, respectively. Finally, three 

mutations (c.754+1G>A, c.863+1G>C, and c.1103-2delA) affect splice sites. In study I 
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three more mutations (c.259C>T; p.Gln87X, c.554-1G>C, and c.1373C>A; 

p.Thr458Lys) were reported by collaborators. 

 

Table 9. Mutations identified in MFSD8 in studies I and II 

Position 
Nucleotide 

change 
Amino acid 

change 
Number 

of patients 
Origin Study 

Exon 3 c.103C>T p.Arg35X 3 Turkey, Cook Islands I, II 

Exon 5 c.416G>A p.Arg139His 1 India I, II 

Exon 6 c.468_469delinsCC p.Ala157Pro 1 Netherlands II 

Exon 6 c.479C>A p.Thr160Asn 1 Turkey I 

Exon 6 c.479C>T p.Thr160Ile 1 Cook Islands I 

Exon 7 
c.627_643delGTA
TACAACACCAG
TTT 

p.Met209IlefsX3 1 Italy II 

Intron 8 c.754+1G>A splice defect 2 Turkey I 

Intron 8 c.754+2T>A splice defect 7 
Czech Republic, 
Turkey I, II 

Intron 9 c.863+1G>C splice defect 1 Turkey II 

Exon 10 c.881C>A p.Thr294Lys 20 
Turkey, Roma from the 
former Czechoslovakia, 
Czech Republic, Spain 

I, II 

Exon 10 c.929G>A p.Gly310Asp 1 Turkey I 

Intron 11 c.1103-2delA splice defect 1 Czech Republic II 

Exon 12 c.1235C>T p.Pro412Leu 1 Mexico I 

Exon 13 c.1393C>T p.Arg465Trp 1 Albania/Greece II 

Exon 13 c.1394G>A p.Arg465Gln 1 Turkey I 

Exon 13 c.1408A>G p.Met470Val 1 Turkey I 

Exon 13 c.1420C>T p.Gln474X 1 Turkey I 

Note: Mutations represented in italics have been originally reported by others; c.754+2T>A was first 

reported by Siintola et al., 2007; c.929G>A by Aiello et al., 2009, and c.1235C>T by Aldahmesh et al., 

2009. 
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Figure 6. Spectrum of MFSD8 mutations. In the schematic representation of the MFSD8 gene in the upper half of the figure the purple boxes represent coding 
exons and are shown in scale. The grey boxes represent the untranslated regions and the black lines the introns and are not in scale. The missense mutations are 
shown in the above and other mutations in the below part of the gene. The putative structure of MFSD8 protein is shown in the lower half of the figure where the 
transmembrane domains are shown as purple boxes and the cytosolic and lysosomal facing domains as lines which are in scale. The brown rectangle depicts the 
lysosomal membrane. Mutations detected by this study are shown in black font, mutations reported by Siintola et al., 2007, are shown in red, those described by 
Aiello et al., 2009, Stogmann et al., 2009, and Aldahmesh et al., 2009, are shown in brown, blue and green, respectively. The residues at which N-glycosylation 
occurs are shown as red circles. The major lysosomal targeting motif is highlighted with a yellow square. Modified from Kousi et al., 2011. 
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In tandem with this study, eight more mutations were reported from three independent 

studies (Aiello et al., 2009; Stogmann et al., 2009; Aldahmesh et al., 2009), raising the 

total number of mutations in MFSD8 to 31 (http://www.ucl.ac.uk/ncl/cln7.shtml). All 

mutations identified are evenly spread throughout the gene, revealing no obvious 

mutation hot spots (Figure 6).  

In addition to the disease-causing mutations identified the deletion c.63-4delC in intron 2, 

which could not be unequivocally associated with the disease, was identified in 

heterozygous state in the Polish patient 450Pa and his father. The c.63-4delC change was 

not identified in 200 Turkish control chromosomes. Both the patient and his father had 

previously been found to carry another heterozygous missense change (c.1738G>A; 

p.Val580Met) in the chloride channel 6 (CLCN6) gene (Poet et al., 2006). Disruption of 

the Clcn6 mouse ortholog causes a lysosomal storage condition characterized by the 

accumulation of lipofuscin and SCMAS (Poet et al., 2006), similar to NCLs. It was thus 

tempting to speculate the patient represented a case of digenic inheritance. However, the 

normal splicing pattern was maintained in the presence of c.63-4delC in RT-PCR 

analyses of RNA samples from the patient and a control individual, suggesting that the 

change is likely to be a rare private variant of benign or possibly disease-modifying role 

rather than the primary cause of the disease. 

The nonsense and frameshift-causing mutations produce abnormally short polypeptides 

that are most likely targeted for nonsense-mediated decay. The true consequences of the 

splice affecting mutations cannot be unequivocally predicted due to the unavailability of 

RNA samples from the patients carrying them. It can be predicted nevertheless that they 

are likely to result in aberrant splicing, since they all affect invariable splice site residues, 

resulting either in aberrant proteins or peptides that are targeted for nonsense-mediated 

decay (Hentze and Kulozik, 1999). In the absence of a functional assay the impact that 

the missense mutations might have on MFSD8 is not clear. The fact that they all affect 

conserved residues in vertebrates, and that they are predicted to be probably or possibly 

damaging according to in silico prediction programs, are in favor of them being disease-

associated. In localization studies none of the missense mutations identified from study II, 

and by Aiello et al., (p.Gly52Arg, p.Tyr121Cys, p.Arg139His, p.Ala157Pro, 
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p.Thr294Lys, p.Pro412Leu, p.Arg465Trp, and p.Pro447Leu) were found to interfere 

with normal distribution of MFSD8. This implies that these missense mutations are likely 

to induce disturbed functional properties rather than altered intracellular localization. 

Although the function of MFSD8 remains elusive, in light of these findings it is believed 

that the mutations causing CLN7 disease are loss of function. 

The pathogenic role of the MFSD8 mutations identified is further supported by the fact 

that they are absent from at least 200 Turkish or CEPH control chromosomes screened. 

Additionally, in all cases where parent samples were available the identified changes 

segregated with the disease phenotype. 

 

5.2.2 Geographical distribution of MFSD8 defects (I, II) 

CLN7 had long been thought to underlie the Turkish variant form of the disease. 

Identification of MFSD8 as the gene underlying the CLN7 subtype in a group of Turkish 

and one Indian patients provided the first evidence suggesting that defects in this gene are 

not confined to a specific population alone (Siintola et al., 2007). The evaluation of 63 

additional non-Turkish patients in studies I and II resulted in the description of a further 

23 patients positive for MFSD8 mutations. In tandem with this work, three studies 

reporting patients with MFSD8 defects from Italy, Egypt and Saudi Arabia were 

published (Aiello et al., 2009; Stogmann et al., 2009; Aldahmesh et al., 2009). These 

studies, together with data from collaborators presented in study I, have collectively 

described MFSD8 mutations in patients from 14 diverse ethnicities, establishing the 

worldwide occurrence of defects in this gene (Table 9). The worldwide distribution of 

defective alleles holds also for defects in most of the other known human NCL genes, 

except for CTSD and DNAJC5 that have been studied in very few patients (study I; 

reviewed in Mole et al., 2005). One such example is the case of CLN8 disease EPMR, 

caused by the CLN8 missense mutation p.Arg24Gly which was established by a founder 

effect in Finland and thought initially to be confined to the Finnish population (Ranta et 

al., 1999). Later genetic studies have identified defects in the same gene also in non-

Finnish patients, such as Turkish and New Zealander (Table 8; Ranta et al., 2004; 
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http://www.ucl.ac.uk/ncl/cln8.shtml) confirming that none of the NCL-associated genes 

is population specific. 

In one of the populations studied, the Roma patients originating from the former 

Czechoslovakia, the MFSD8 missense mutation p.Thr294Lys was identified in 

homozygosity in 14/15 patients. Furthermore, haplotype analysis around the CLN7 locus 

revealed a shared haplotype among all affected individuals, suggesting that a founder has 

established this mutation in the Roma population. A second common mutation is the 

splice-site affecting c.754+2T>A identified in seven out of nine Czech patients evaluated. 

Although haplotype analysis of polymorphic markers around the mutation locus was not 

performed it is likely that this mutation also represents a founder effect. Identification of 

these prevalent mutations in Roma and Czech patients is of crucial importance as this 

information can be used for the design of future diagnostic tests within these populations. 

Ultimately, diagnostic screening could help eliminate the incidence of the disease in these 

populations.  

Prior to this study the group of Roma patients had been described to clinically resemble 

CLN6 disease (Elleder et al., 1997b). Linkage over the CLN6 locus was confirmed with 

later haplotype analyses, in which it was further hypothesized that the Roma patients 

were likely to share a common ancestor with Indian patients, since the former had 

migrated from India in 1000AD (Sharp et al., 2003). The inability to detect CLN6 

mutations in the Roma patients, together with the detection of the MFSD8 p.Thr294Lys 

in study II, imply that the reported linkage over the CLN6 locus was probably due to the 

excess of homozygosity seen in such inbred populations. Subsequent genetic analyses in 

Indian patients have identified five private CLN6 mutations in an equal number of 

families, suggesting that CLN6 defects have not been established by a common ancestor in 

India (Sharp et al., 2003; Wheeler et al., 2002; Teixeira et al., 2003; Table 8). Moreover, 

the identification of two Indian patients with MFSD8 mutations (Siintola et al., 2007; 

Table 9) provides further support that Indian LINCL was not established by a founder, 

but instead is genetically heterogeneous. 

A second population characterized by genetic heterogeneity is the Turkish population. 

Originally, the Turkish variant had been proposed to be a distinct clinical entity, justified 
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by the lack of homozygosity across the then known NCL loci in a set of six 

consanguineous Turkish families (Wheeler et al., 1999). The identification of CLN8 and 

CLN6 mutations in subsets of Turkish patients provided the first evidence that the Turkish 

subtype is not caused by mutations in a single gene (Ranta et al., 2004; Siintola et al., 

2005). Furthermore, in the study that identified MFSD8 it became clear that unlike the 

Finnish subtype (caused by a single founder mutation in CLN5; Savukoski et al., 1998), a 

suspected founder effect in the Turkish population did not exist, justified by the 

identification of five different mutations in four families (Siintola et al., 2007). The report 

of 16 additional Turkish patients with private MFSD8 mutations described here further 

highlights the genetic heterogeneity underlying NCL in this population (studies I, II). 

Today, defects in seven out of nine NCL-causing genes have been identified in Turkish 

patients, expanding our knowledge of the genetic heterogeneity characterizing this 

population (Tables 8, page 73 and 9, page 75). As the role of DNAJC5 has not yet been 

studied in Turkish patients, it cannot be excluded that a fraction of NCL patients from 

this population will be reported to be positive for mutations in this gene in the future. 

Despite the lack of detailed clinical descriptions, the broadly similar clinical phenotype of 

Turkish LINCL patients is caused by mutations in any of the PPT1, TPP1, CLN3, CLN5, 

CLN6, MFSD8, and CLN8 genes (Tables 8 and 9). These findings confirm the fact that the 

classical and variant forms of the genetically heterogeneous LINCL subtype cannot be 

distinguished in terms of age of onset and/or clinical presentation. The clinical 

homogeneity of the LINCL subtypes in association with the genetic and allelic 

heterogeneity characterizing the Turkish population make prioritization of the genes to 

be screened during differential diagnosis of LINCL very difficult. Instead, the diagnostic 

procedure should first involve measurement of the enzyme activity levels of TPP1, which 

if found low denote TTP1 insufficiency and establish the CLN2 disease diagnosis. In the 

case of normal TPP1 activity levels all LINCL variant genes should be screened for 

mutations. In contrast to this, in cases where a founder effect has been identified, like the 

CLN5 p.Tyr392X in Finnish patients (Savukoski et al., 1998) or the CLN6 p.Glu72X in 

patients of Costa Rican origin (Gao et al., 2002; Wheeler et al., 2002), providing a 

molecular genetic diagnosis is facilitated through evaluation of these common mutations 

through DNA-based diagnostic tests.  
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It is noteworthy that in a patient originating from a remote island of the Pacific ocean 

compound heterozygosity was detected for the nonsense p.Arg35X and the missense 

p.Thr160Ile mutations (Table 9). Given the geographical isolation of the patient’s place of 

origin, and the fact that the island’s population derived from the few settlers that first 

inhabited it, a homozygous mutation due to IBD was anticipated, compatible with a local 

founder effect. Whether two distinct mutations have occurred in the same gene in an 

apparently limited initial gene pool because of random mutation or because of an 

unknown underlying mechanism is not known. A similar phenomenon has previously 

been described in NCL patients from Newfoundland (Moore et al., 2008), but also in 

other clinical disorders such as the Bardet-Biedl syndrome (Katsanis et al., 2001). 

 

5.2.3 Clinical phenotype in CLN7 disease (I, II) 

In CLN7 disease, variant late infantile, the majority of patients manifest the first 

symptoms between 2-7 years of age (Topcu et al., 2004; Siintola et al., 2007; Aiello et al., 

2009; Stogmann et al., 2009; Aldahmesh et al., 2009; study II). The majority of MFSD8 

positive patients were reported to manifest epilepsy or developmental regression as the 

most common presenting symptom (Aiello et al., 2009; Stogmann et al., 2009; study II). 

Nevertheless, patients with visual failure as the presenting symptom have also been 

described (Aiello et al., 2009; Aldahmesh et al., 2009; study II). Following the initial 

symptom, the patients develop rapidly the whole spectrum of disease symptoms, involving 

myoclonus, ataxia, psychomotor decline, and speech deterioration. Patients affected with 

CLN7 disease die at a mean age of 12 years with a disease duration ranging from 3 to 12 

years, though patients surviving until the age of 18 years have also been reported 

(Aldahmesh et al., 2009; Stogmann et al., 2009; study II). Visual failure occurs at a mean 

age of 4.5 years. All patients for whom an electroretinogram (ERG) has been performed 

have been found to have abnormal findings. Magnetic resonance imaging (MRI) studies 

reveal cerebellar and cerebral atrophy in most patients imaged (Aiello et al., 2009; study 

II), although some had normal findings (Stogmann et al., 2009). Additionally, white 

matter signal changes are identified in many patients, especially in the periventricular 

regions. 
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The phenotype of patients with CLN7 disease is clinically indistinguishable from that of 

patients with other NCL subtypes and onset in late infancy. The only distinction that 

could be made is that CLN7 disease is characterized by a slightly later disease onset and a 

more severe seizure phenotype compared to the classic LINCL CLN2 disease (Topcu et 

al., 2004). Unequivocal classification of a patient suspected to be affected by LINCL into 

any of the five LINCL subtypes can only be achieved via molecular genetic testing and 

identification of the underlying disease causing mutations.  

Similar to the other NCL subtypes with onset in late infancy, the ultrastructural material 

accumulating in the cells of patients with CLN7 disease present as a mixture of FPs with 

RL (Siintola et al., 2007). The FP/RL pattern is only occasionally associated with CLs 

(study II). This draws a line between the classic and variant forms of LINCL, whereby 

CLs predominate in the former, while FP and/or CL inclusions are the primary finding 

in the variant subtypes. 

 

5.2.4 Atypical phenotypes caused by MFSD8 defects (II) 

Only one case with mutations in MFSD8 and an atypical phenotype has been detected to 

date. In a patient homozygous for the missense p.Ala157Pro of Dutch origin the disease 

started at 11 years of age with visual decline, resembling JNCL. After a silent period of 

more than 10 years the patient started manifesting motor difficulties at the age of 24 years 

and seizures at the age of 25 years. The patient became ataxic over a period of four years. 

Cognitive decline developed at the fourth decade of life, and the patient became 

wheelchair-bound only at age 39 years. Today the patient is still alive at the age of 41 

years. 

The mechanism through which the missense p.Ala157Pro can result in the manifestation 

of such a mild disease phenotype, as opposed to the typical CLN7 disease, variant late 

infantile phenotype, is not known. Similar to the other missense MFSD8 mutations 

p.Ala157Pro does not alter the protein’s intracellular distribution and thus is likely to 

have an impact on the functional properties of MFSD8. The milder phenotype could be 
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due to the mutation affecting a functionally non-critical residue, or to the amelioration of 

the clinical picture by modifier alleles residing in loci outside CLN7. 

 

5.2.5 The MFSD8 protein: Glycosylation (III) 

The putative transporter function of MFSD8, justified by sequence homology analyses 

that classify it as a member of the MFS transporter proteins (Siintola et al., 2007), 

distinguish MFSD8 from the other NCL-associated proteins which are either lysosomal 

enzymes or transmembrane proteins of unknown function. Elucidation of the precise 

function and substrate specificity of MFSD8 are crucial not only because the transporter 

substrates could comprise novel NCL candidates, but also because they might shed light 

on the mechanisms that lead to neurological, visual and psychomotor deterioration. 

Towards understanding of the protein function, primary protein properties such as 

glycosylation and trafficking were addressed in study III. 

Evidence for glycosylation of MFSD8 came from western blot analyses in which hCLN7 

treated with the PNGaseF endoglycosidase showed increased electrophoretic motility as 

opposed to the untreated protein. In human MFSD8 only positions p.Asn371, and 

p.Asn376 met all the requirements for possible N-glycosylation: they were exposed to the 

lumen and comprised N-glycosylation consensus sites (N-x-S/T, where N is asparagine, x 

can be any amino acid except for proline and S/T denotes that serine or threonine must 

be present in the third position). To address the role of these residues in MFSD8 

glycosylation both asparagine residues were disrupted individually (p.Asn371Gln and 

p.Asn376Gln) or simultaneously (p.Asn371Gln+p.Asn376Gln; Table 6, page 65). Of the 

generated mutants only hCLN7p.Asn371Gln+p.Asn376Gln was insensitive to PNGaseF 

and travelled as a sharp band of ~70 kDa, a finding that was also confirmed by an 

independent study carried out in parallel with study III (Steenhuis et al., 2010). The 

molecular mass of the unglycosylated MFSD8 was smaller than the expected mass by 14 

kDa, a discrepancy that was experimentally proven to not derive from C-terminal 

proteolytic processing, but rather by the high protein hydrophobicity that might have 

altered the electrophoretic mobility of the peptide (Steenhuis et al., 2010). 
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Disruption of the orthologous positions in the mouse peptide did not abolish sensitivity to 

PNGaseF. Only when a third residue was disrupted (p.Asn389Gln) was electrophoretic 

homogeneity achieved, suggesting that the Mfsd8 mouse is glycosylated at three positions 

(p.Asn372, p.Asn377, and p.Asn389), unlike its human ortholog which is N-glycosylated 

at two residues (p.Asn371 and p.Asn376). 

 

5.2.6 Subcellular localization of MFSD8 (III) 

In the study that originally identified MFSD8 the N-terminally HA-tagged protein 

(HAMFSD8) was found to localize in the lysosomes of COS-1 and HeLa cells (Siintola et 

al., 2007). In study III additional tagged constructs were used to evaluate intracellular 

localization of MFSD8. Co-localization of EGFP-hCLN7 and EGFP-mCLN7 with 

LAMP1 confirmed the initial findings for lysosomal/endosomal targeting of MFSD8. 

Evidence that tagging MFSD8 does not interfere with protein distribution came from 

localization studies in which untagged mCLN7, detected with a peptide raised against a 

22-aa peptide of the mouse ortholog sequence, also co-localized with lysosomal markers. 

Finally, the lysosomal/endosomal targeting of MFSD8 was confirmed in mouse 

hippocampal neurons where the endogenously expressed protein was detected, showing 

that protein overexpression did not affect protein targeting. The latter shows that unlike 

CLN8 that displays differential intracellular distribution in neuronal versus non-neuronal 

cells (Lonka et al., 2004), MFSD8 specifically exerts its functional role at the lysosomal 

membrane. 

 

5.2.7 Sorting mechanisms of MFSD8 targeting (III) 

Since the sorting signals mediating protein trafficking are typically found in the protein 

cytosolic tails, the CLN7-CLN3dm-Δ1-38 and CD8-CLN7-Cterm chimeras were 

constructed to address whether they contain relevant trafficking information. Expression 

of both chimeras resulted in re-direction of the CD8 reporter protein from the PM to 

punctate intracellular structures, suggesting that both tails of MFSD8 are likely to carry 

targeting information. Disruption of the major candidate signals (the N-terminal dileucine 
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motif 13-LL-14 and the C-terminal tyrosine-based motif 513-YGRI-516, generating the 

mutants CLN7p.L13A-CLN3dm-Δ1-38 and CD8-CLN7-Cterm_p.Y513A, respectively, 

abolished intracellular targeting and resulted in dramatic redirection of both chimeras to 

the PM. The chimera experiments showed that both termini of MFSD8 are likely to 

contain information necessary for lysosomal targeting and that 13-LL-14 and 513-YGRI-

516 are the motifs that most likely contain this information. 

To further evaluate the role of the two motifs revealed to contain targeting information 

by the chimera experiments, mutations were introduced to disrupt each of them in the 

full length HAMFSD8. Of the two only disruption of 13-LL-14 (HAMFSD8p.L13A) 

resulted in major but not complete misrouting of the protein to the PM. Contrary to the 

clear impact of 13-LL-14 disruption, mutations in the tyrosine-based 513-YGRI-516 

motif (HAMFSD8p. p.Y513A) did not have an impact on the distribution of HAMFSD8, 

suggesting a minor if any role at all in targeting of MFSD8. Complete misdirection of 

MFSD8 to the PM was not achieved even when the two motifs were simultaneously 

disrupted (HAMFSD8p.L13A+p.Y513A ), or when they were combined with mutations in 

other less-likely candidate motifs (HAMFSD8p.L13A+p.I25A+p.Y513A, 
HAMFSD8p.L13A+p.I444A+p.Y513A, and HAMFSD8p.L13A+p.Y503A+p.Y513A). 

Biotinylation experiments measuring the amount of MFSD8 directed to the PM yielded 

the same results with the targeted-mutagenesis localization experiments, confirming the 

conclusion that although the N-terminal dileucine motif is the major lysosomal 

determinant for MFSD8, additional signals are required for complete PM redirection of 

the protein. Exclusion of all the putative candidate motifs in study III suggests that the 

MFSD8 lysosomal signals that remain unidentified are presumably unconventional. 

Existence of unconventional motifs could also explain the discrepancy between the 

chimera and full-length mutant protein experiments addressing the role of the C-terminal 

portion of MFSD8 in protein targeting. 

To obtain an insight into the route that MFSD8 follows on its way to the lysosomes 

experiments blocking endocytosis by transfection with the AP180 mutant were 

performed. In these cells, which were unable to uptake fluorescent transferin, MFSD8 

targeting was not affected, suggesting that MFSD8 does not need to be transported to the 



RESULTS AND DISCUSSION 86 

PM prior to being delivered to the lysosomes but instead follows the direct trafficking 

route towards them. The same was suggested in immunoblotting experiments where the 

MFSD8 termini were expressed as GST-fusion proteins and used to pull-down AP 

complexes via incubation with HeLa cell lysates. In these experiments the major dileucine 

motif was found to specifically bind to AP-1, since the detected interaction was lost when 

the N-terminal dileucine motif was disrupted by mutations. To obtain more information 

on the APs mediating sorting of MFSD8 both wild-type (wtHAMFSD8) and mutant 

constructs (HAMFSD8p.L13A, HAMFSD8p.Y513A, and HAMFSD8p.L13A+p.Y513A) 

were expressed in AP-1 and AP-3 deficient cell lines. The fact that deficiency for either 

AP-1 or AP-3 alone does not alter the distribution of wtHAMFSD8 suggests that the major 

dileucine motif is recognized by more than one AP. Furthermore, even when both 

p.L13A and p.Y513A mutations are expressed in AP-1 and AP-3 adaptors-deficient cell 

lines a pool of MFSD8 can still be correctly delivered to the lysosomes, supporting the 

idea that several motifs recognized by several adaptors must add up to form the complex 

repertoire of mechanisms underlying sorting of MFSD8. 

The importance of the N-terminal dileucine motif was independently demonstrated by 

Steenhuis et al. (2010). The experimental set-up employed was very similar to the one 

used in study III, involving targeted-mutagenesis of the putative sorting motifs followed 

by localization studies with immunofluorescence microscopy (Steenhuis et al., 2010). 

Biotinylation experiments in both studies reported a minor sorting role for the C-terminal 

p.Y503 and p.Y513, justified by the increase of the portion of MFSD8 on the PM when 

the major dileucine signal and both tyrosines are simultaneously disrupted by mutations 

(Study III; Steenhuis et al., 2010). One major contradiction supported by two different 

experimental approaches in each study was reported. In Steenhuis et al. (2010) 

biotinylation experiments showed that 22% of wild-type MFSD8 resides at the PM at 

steady-state and that this fraction is increased when endocytosis is blocked, favoring the 

hypothesis that MFSD8 follows the indirect route to the lysosomes (Steenhuis et al., 

2010). The same experimental approaches used in study III did not identify MFSD8 at 

the PM and showed that endocytosis blocking has no effect on lysosomal delivery of 

MFSD8, proposing that the direct route is followed by MFSD8. The latter is also 

supported by a third experimental procedure that identified the interaction between the 
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dileucine motif and AP-1 complexes (study III), which are known to operate in the 

endosomal / lysosomal pathway (Robinson and Bonifacino, 2001). Differences in the 

experimental set-up used could account for the discrepancies in the biotinylation and 

endocytosis blocking experiment results. Although the direct trafficking route is supported 

by three different approaches, additional experiments need to be performed in order to 

be able to unequivocally draw this conclusion. 

 

5.2.8 Expression of MFSD8 in rodent brain (III) 

To address the cellular and regional expression of MFSD8 the mRNA levels were 

measured via real-time PCR analyses in different cell types and different brain regions of 

rats. On the cellular level the highest MFSD8 mRNA levels were detected in the neurons, 

in which the protein was expressed 6- to 12-fold more than in astrocytes or microglia 

(Figure 7). Of the other NCL-associated genes used as controls, PPT1 and CLN3 were 

expressed in neurons at almost equal levels as in astrocytes and microglia, respectively. 

MFSD8 is distinguished from PPT1 and CLN3, however, because it is the only one with 

most prominent expression in neurons. CTSD was predominantly expressed in microglia 

and TPP1 in astrocytes. The indirect evidence thus obtained from the transcript 

expression levels in the rat brain assigns a prominent role for MFSD8 in neurons. It is 

noteworthy that although the genes evaluated affect different types of brain cells they all 

result in similar clinical phenotypes. 
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Figure 7. Expression levels of CTSD, PPT1, TPP1, CLN3, and MFSD8 in neurons, astrocytes and 

microglial cells from rat brain. 

 

In the absence of an antibody that could be used in immunohistochemical analyses to 

address the spatiotemporal expression of MFSD8, indirect evidence was sought from 

measuring the transcript expression levels in different rat brain regions. MFSD8 was 

detected to be 5-fold more abundant in the hippocampus than in the other regions 

evaluated (Figure 8). Prominent hippocampal expression was also seen in the in situ 

hybridization experiments, which furthermore indicated the cerebellar granular layer and 

the deeper neocortex areas among the regions where MFSD8 is mostly expressed. 

Interestingly, the expression levels of the transmembrane NCL proteins evaluated 

(MFSD8 and CLN3) were more than 10-fold lower compared to the levels of expression 

detected for the soluble NCL mRNAs (CTSD, PPT1, and TPP1) (Figure 8). The 

significance of these differences in expression remains unknown. 
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Figure 8. Expression levels of CTSD, PPT1, TPP1, CLN3, and MFSD8 in the cortex, hippocampus, 

striatum, cerebellum and midbrain of the rat brain. 

 

5.2.9 Neuropathological findings in postmortem human brains of MFSD8 

positive patients (III) 

Histological analyses of brains of MFSD8 positive patients, who died between ages 7-18 

years, showed maximal accumulation of lipopigment inclusions in neurons, and to a lesser 

extent in oligodendrocytes or astrocytes. These findings are in agreement with the data 

obtained from rodent brains, denoting that MFSD8 is predominantly expressed in 

neurons and that neuronal populations such as those of the cerebellar granular cell layer 

die faster than other cell-types. This provides indirect evidence that MFSD8 has a central 

role in neurons, which are postulated to be the most vulnerable cell-type in MFSD8 

deficiency. Furthermore, the accelerated degeneration of the cerebellar granule cell layer 

and the hippocampal pyramidal cell layer of patients, are in perfect agreement with the 

regional vulnerability seen in the in situ hybridization analysis in the rodent brain. 

An interesting observation came from the comparison of storage material load in different 

cell types and survival of these cells. Purkinje cells in which storage was more prominent 
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survived longer than cerebellar granular cells in which the lipopigment accumulation was 

more discrete. This leads to the conclusion that either the Purkinje cells are more resistant 

to storage material accumulation or that it is not the accumulation of the storage material 

per se that induces the extensive neuronal cell death that takes place throughout the 

disease progression. 
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5.3  The hypothesis of NCL genes acting as modifiers of phenotype 
(unpublished) 

While dissecting the NCL genetic background in the cohort of Turkish patients in study I, 

heterozygous changes (involving missense, nonsense and splice-site affecting) were 

identified in some of the patients (data not shown). The single sequence variations were 

either seen alone, or in combination with homozygous or heterozygous defects in other 

NCL genes. In the case where one of the heterozygous changes existed alone or in 

combination with a second heterozygous change in a second gene, the pattern of 

inheritance is not able to explain manifestation of the disease under a Mendelian model. 

A more likely hypothesis was that the second mutation comprised a change that could not 

be identified with the sequencing methods used, such as deletion, insertion, copy number 

variation or intronic change.  

A second hypothesis would be that these mutations would not be disease-causing per se, 

but instead would increase the mutational load of a given NCL patient, modifying the 

phenotype. If the latter was true it could potentially contribute to the explanation of the 

pronounced inter- and intra-familial variability in disease manifestation described in 

several reports. It was therefore tempting to test the hypothesis of NCL loci acting as 

modifiers of the phenotype caused 

by mutations in other NCL loci. 

To test this hypothesis 105 Turkish 

patients were sequenced for all the 

known human NCL genes except 

for DNAJC5, irrespective of the 

haplotype over the corresponding 

locus. Having established a 

complete genetic profile of each 

patient for the seven NCL genes, a 

total of 32 patients were detected 

to carry changes in at least two 

distinct NCL loci. In these cases it 

Table 10. Locus interactions based on genetic 
observations 

Primary 
locus 

Gene Secondary locus 

CLN1 
PPT1 

CLN2, CLN5, CLN6, CLN7 

CLN2 TPP1 CLN1, CLN3, CLN5, CLN7, CLN8 

CLN3 CLN3 CLN2, CLN5, CLN7 

CLN5 
CLN5 CLN1, CLN2,CLN3, CLN5, CLN6, 

CLN7, CLN8 

CLN6 
CLN6 

CLN1, CLN5, CLN7 

CLN7 MFSD8 CLN1, CLN2, CLN3, CLN5, CLN6 

CLN8 CLN8 CLN5 
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would be tempting to speculate that one NCL locus has an epistatic interaction with the 

second NCL locus. A list of all possible such interactions based on patient genotyping 

alone is given in Table 10. The locus interactions determined by the genetic findings are 

in agreement with the identified protein interactions as determined by experimental data 

(Figure 9). For example, homozygous or heterozygous changes in the CLN1 locus can 

simultaneously be detected with homozygous or heterozygous changes in CLN2, CLN5, 

CLN6, or CLN7 (Table 10). The same possible locus interactions are supported by results 

from the protein experiments whereby PPT1 can directly interact with CLN5 and CLN6, 

and indirectly (via CLN5) with TPP1 (Figure 9). No data on protein interactions exist yet 

for MFSD8. 

 

Figure 9. NCL protein interactions as determined by experimental evidence from protein and cellular 
work (von Schantz et al., 2008; Lyly et al., 2009; Uusi-Rauva et al., 2007; Luiro et al., 2006; unpublished 
observations by the group of Anu Jalanko). Duplication of the protein representation (PPT1, CLN5, and 
CLN6) indicate that the peptide of the given protein interacts with other peptides of the same protein. The 
figure was produced using Servier Medical Art (http://www.servier.com/servier-medical-art/powerpoint-
image-bank).  

 

In the modifying locus hypothesis, both the genetic and molecular approaches denote 

CLN5 to have a central role in the hypothetical NCL pathway. From a molecular 

standpoint CLN5 is known to interact with TPP1 (Vesa et al., 2002), and to be 
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transported together with PPT1 to the lysosomes via the Man6P-independent pathway 

(Lyly et al., 2009; Vesa et al., 2002). Additionally, CLN5 has confirmed interactions with 

TPP1 and CLN3 in the lysosomes, and with PPT1, CLN6, and CLN8, in the ER (Lyly et 

al., 2009). From a genetic point of view CLN5 was the gene with most changes identified 

across its sequence. It is surprising how CLN5, which causes premature death and severe 

neurodegeneration when defective, can harbor so much variation. The disproportionate 

numbers of genetic variants identified and patients with CLN5 molecular genetic diagnosis 

could be explained by the modifier hypothesis, whereby the CLN5 locus contributes more 

modifying (60%) than disease-causing (10%) alleles (Figure 10). 

 

Figure 10. Percentage representation of the disease-causing (recessive and 2mut+1) and modifying alleles 

(1mut+2) across the seven NCL loci evaluated 

 

The lack of comprehensive clinical data did not allow correlations to be made between 

specific sequence changes and manifestation or absence of specific clinical symptoms. 

Furthermore, with the sample size being so small it was not possible to draw statistically 

significant correlations between clinical timing or severity and combination of defects in 

particular NCL genes. It nevertheless remains tempting to test whether the NCL genes 

contribute modifying alleles. This hypothesis needs to be tested in animal models such as 

the Cln1-/- and Cln5-/- double knock-out mouse (under development by the Anu Jalanko 

lab). 
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5.4 Identification of novel childhood onset PME genes 

A total of 135 patients of Turkish origin were excluded from all known NCL loci in study 

III. Of these three small families (families x, N36 and N51; Figure 5) and 19 singletons 

were analyzed in a genomewide SNP scan. Although data on consanguinity were not 

available for all patients genotyped homozygosity mapping was performed. The analysis 

concentrated first on the families, and subsequently on the singletons. 

 

5.4.1 Identification of mutations in PLA2G6 (unpublished) 

Homozygosity mapping in family N36 mapped three candidate loci, one in each of 

chromosomes 19, 21 and 22. In addition to the affected sibling of family N36 two more 

patients showed a long homozygosity run over the locus on chromosome 22 (N4603, and 

N3903). The critical interval on chromosome 22 was 10.2 Mb long (chr.22: 32.4-42.6 

Mb) and harbored a total of 184 genes (Figure 11). 

 

Figure 11. Homozygosity over the candidate locus on chromosome 22 for family N36. The genotype of 

each individual is represented as dots, whereby the dots distributed in the middle of each panel represent 

heterozygous calls, while the dots at the top or bottom of the panels represent homozygous variants. The 

homozygous segment in patient N3603 is highlighted in pink. The calls over the candidate locus are shown 

in red. The chromosomal view over which the genotypes are distributed is shown in the lower part of the 

figure. 
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The 184 positional candidate genes residing within the critical chromosomal interval 

were prioritized based on the putative function. After having performed sequencing 

analysis in 13 of the positional candidate genes (Table 11) two patients were found to 

carry mutations in PLA2G6 (NM_001004426), a calcium-independent phospholipase A2 

that catalyzes the release of fatty acids from phospholipids. Patient N3603 was 

homozygous and his healthy sister heterozygous for the nonsense variant c.1903C>T 

(p.Arg35X), while patient N3903 was homozygous for the in-frame deletion 

c.2065_2067delATC (p.Ile689del). The remaining patient linked over this locus (N4603) 

was not positive for mutations in PLA2G6. This could be explained by the fact that patient 

N4603, for whom 6% of the genome is in homozygosity, was homozygous over the region 

by chance. 

 

Table 11. Genes screened from the candidate interval on chromosome 22. 

Gene 
name 

Description Subcellular localization Disease association 

A4GALT alpha 1,4-galactosyltransferase Golgi apparatus membrane  

ADSL Adenylosuccinate lyase isoform a  
Adenylosuccinate 

deficiency 

GGA1 
Golgi associated, gamma adaptin ear 

containing 
  

KCNJ4 
Potassium-inwarding rectifying 

channel J4 
Membrane (multi-pass membrane 

protein)  

KDELR3 KDEL receptor 3 isoform b   

NAGA 
Alpha-N-acetylgalactosaminidase 

precursor Lysosome 
Schindler and Kanzaki 

disease (early onset 
neuroaxonal dystrophy) 

PACSIN2 
Protein kinase C and casein kinase 

substrate in 
Cytoplasmic vesicle (by similarity)  

PLA2G6 Phospholipase A2  

Infantile neuroaxonal 
dystrophy (INAD) and 

neurodegeneration with 
brain iron 

accumulation (NBIA) 

PSCD4 
Pleckstrin homology, Sec7 and 

coiled/coil 
  

SLC16A8 Solute carrier family 16, member 8 
Cell-membrane (multi-pass 

membrane protein) 
 

SLC25A17 
Solute carrier family 25 
(mitochondrial carrier) 

Peroxisome membrane (multi-pass 
membrane protein) 

 

SYNGR1 Synaptogyrin 1 isoform 1a 
Membrane (multi-pass protein); 

melanosome; cell junction; synapse 
 

TXN2 Thioredoxin 2 precursor Mitochondrion  
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Previously defects in PLA2G6 had been associated with infantile neuroaxonal dystrophy 1 

(INAD1 MIM# 256600) and neurodegeneration with brain iron accumulation (NBIA 

MIM# 610217; Morgan et al., 2006; Khateeb et al., 2006; Gregory et al., 2008). INAD is 

a progressive encephalopathy with onset at approximately 2 years of life. The disease is 

characterized by the accumulation of lipid storage in the brain, swelling and degeneration 

of the neuronal axons, as well as scattered spheroids in the central nervous system (Cowen 

and Olmstead, 1963). In NBIA the phenotype is very similar to INAD with the only 

difference that the former typically has a later disease onset and patients may survive until 

the third decade of life (Hortnagel et al., 2004). Also in NBIA there is iron accumulation 

in the basal ganglia, giving a sign on MRI that resembles the characteristic ‘eye of the 

tiger’. Nevertheless, not all PLA2G6 positive cases present the characteristic brain iron 

accumulation, and thus this gene comprises a good candidate not only for patients with 

neurodegeneration and brain iron accumulation, but also for patients with similar clinical 

findings but no iron accumulation in their brains (Paisan-Ruiz et al., 2010).  

After the identification of mutations in PLA2G6 a cohort of 16 patients with a putative 

INAD clinical diagnosis and a group of 107 Turkish patients with PME and no mutations 

in the NCL genes were evaluated for mutations in this gene. A further nine patients were 

found to carry PLA2G6 mutations and were thus provided with a molecular diagnosis 

(Table 12). Of the 11 PLA2G6 mutations identified eight are novel and three 

(p.Gly347Arg, p.Pro353Leu, and p.Arg635X) have been previously reported to cause 

INAD (Morgan et al., 2006). These findings raise the total number of mutations identified 

in PLA2G6 to 60. With the identification of altogether 11 patients positive for mutations 

in PLA2G6 it becomes apparent that the gene should be considered for mutation 

screening in differential diagnosis of patients with late infantile or childhood onset 

neurological deterioration. 
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Table 12. Mutations identified in the sequence of PLA2G6 

Position Nucleotide change Amino acid change 
Patient identifier 

(status) 
Study 

Exon 5 c.753_754insC p.Asn252GlnfsX130 
M1203 (homozygous) 

r3 (heterozygous) 
IV 

Exon 7 c.902G>C p.Arg301Pro M1303 (homozygous) IV 

Exon 7 c.1039G>A p.Gly347Arg M0903 (homozygous) IV 

Exon 7 c.1058C>T p.Pro353Leu M0603 (homozygous) IV 

Exon 7 c.1077G>A Splice site affecting M1103 (homozygous) IV 

Exon 10 c.1408A>G p.Met470Val M1503 (homozygous) IV 

Exon 11 c.1573G>A p.Ala525Thr M0703 (heterozygous) IV 

Exon 13 c.1748T>C p.Met583Thr M0403 (heterozygous) IV 

Exon 14 c.1903C>T p.Arg635X N3603 (homozygous) IV 

Exon 14 c.1982C>T p.Thr661Met r3 (homozygous) IV 

Exon 15 c.2065_2067delATC p.Ile689del N3903 (homozygous) IV 

 

5.4.2 Identification of sequence variations in USP19 and TXNDC6 through 

targeted next-generation sequencing (unpublished) 

Homozygosity analysis in the affected siblings of family N51 mapped four candidate loci 

(two distinct loci on chromosome 1, and one locus on each of chromosomes 3 and 16), 

harboring a total of 199 genes. In the affected sisters of family x four different loci (one on 

each of chromosomes 3, 8, 16, and 17) were determined, within which lay altogether 285 

genes. 

The exons and exon-intron junctions of the 484 positional candidate genes in both 

families were screened for mutations using the NimbleGen Sequence Capture array 

protocol followed by subsequent Illumina sequencing. Data analysis in the two families 

revealed one change segregating with the phenotype per family. The patients in family 

N51 were homozygous for the transition c.176G>A (p.Gly59Asp) in USP19, and the 

siblings in family x were homozygous for the transition c.433T>C (p.Tyr145His) in 

TXNDC6 (Figure 12). 
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Figure 12. Schematic representation of the families N51 and x. The chromatogram showing the genetic 

defect identified in each of the families is given below the affected individuals. The sequence of a control 

individual is shown below the chromatograms showing the changes identified in patients. The base affected 

is underlined in red. 

 

USP19 (NM_006677.2) encodes for the ubiquitin specific peptidase 19. The encoded 

protein is a deubiquitinating enzyme that regulates the degradation of a variety of 

different proteins, and is also involved in the turnover of ER-associated degradation 

substrates (Hassink et al., 2009). The same change was identified in heterozygous state in 

two of the 107 PME patients that remained with no molecular genetic diagnosis, but a 

second change within USP19 could not be identified. Collectively, the variant identified in 

family N51 was present in four patients of Turkish origin. Furthermore, the residue 

affected by the change is not conserved across vertebrates, which is most probably the 

reason why in silico analysis have predicted it to have a neutral impact. 

TXNDC6 (NM_178130.2) encodes for the thioredoxin domain containing protein 6. The 

function of TXNDC6 is not known. Sequence similarity analyses predict a putative 

cytoplasmic/cytoskeletal localization for the protein and a possible role in the regulation 
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of microtubule physiology. The p.Tyr145His change identified in patients of family x is 

highly conserved across vertebrates and was predicted to represent a probable damaging 

change. Screening of the panel of 107 PME patients that remained with no molecular 

genetic diagnosis did not reveal any changes in the sequence of TXNDC6. 

Neither of the USP19 or TXNDC6 affecting changes was identified in 180 ethnically 

matched control chromosomes or in the release of the 1000 Genomes project, as of 

October 2011. This suggests that both variants are very rare. The variant identified in 

family x is likely to be private since it has only been detected in the family’s affected sibs. 

The fact that USP19 p.Gly59Asp was the only variant identified across the sequence of 

the gene in four different patients suggests that the most likely hypothesis is that this 

change represents a very rare population specific variant that is unlikely to be disease-

causing, especially when considering that in two of the patients it represented the only 

identified change. It can of course not be excluded that in these two patients the second 

mutation could have been missed by the sequence screening methods used in this study, 

which cannot detect all deletions, insertions that might exist across the gene sequence or 

the changes in introns and regulatory elements. It can thus be concluded that although 

USP19 is not likely to represent a disease-causing gene, the disease-association of either of 

the variants detected cannot be unequivocally established until a second family with 

mutations in the same genes has been identified. Thus, the role of TXNDC6 and USP19 as 

disease-associated genes awaits verification in further patients. 

 

5.4.3 KCTD7 gene and protein 

 

5.4.3.1  Ident i f i cat ion o f  KCTD7 in the sporadic  pat ients  (IV) 

Having completed the analysis in the families genotyped with the SNP-based 

genomewide scan array, homozygosity mapping analysis was subsequently applied to the 

18 sporadic patients. The homozygous runs were determined and the 18 singletons were 

subsequently grouped together on the basis of overlapping homozygosity over the same 

loci. The candidate loci were prioritized based on how many patients shared homozygous 
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segments over them. Hence, a region on chromosomal position 7q11.21 over which eight 

patients were simultaneously homozygous (Figure 13) was considered the primary 

candidate locus. The homozygous segments over the region varied in length from a 

minimum of 1.9 Mb in patient k3 to the longest of 31.5 Mb in patient N4603. Evaluation 

of the homozygosity breakpoints helped refine the minimal critical interval shared by all 

eight patients to a 1.5 Mb region, with markers rs1812771 from patient k3 and rs4626481 

from patient N4803 defining the breakpoints of the candidate region (chr.7: 64.563.264-

66.111.815) (Figure 13). 

 

 

Figure 13. Candidate region on chromosome 7q11.1-21.2. Each bar represents a different patient’s 

homozygous haplotype block over the candidate locus. The diagonal lines at the bar of patients N4103 and 

N4603 denote that the homozygous segment in these patients extends further than the indicated region. 

The physical and chromosomal positions are given at the lower part of the figure. The patients found to 

carry mutations in KCTD7 are indicated with a white asterix at the left part of the homozygous segment. 

The black vertical bars show the homozygosity breakpoints at patients k3 and N4803, which defined the 

minimal critical interval to the 1.5 Mb region 64.563.264-66.111.815. The position of KCTD7 is given with 

a black arrow at the bottom of the picture. 
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Altogether 11 genes resided within the 1.5 Mb candidate interval (Table 13). These were 

prioritized based on the available information on the known or putative function of the 

encoded protein, tissue expression and intracellular compartment localization.  

 

Table 13. Genes residing within the critical interval on chromosome 7: base positions 64,563,264-

66,111,815 (Build 37; GRCh37/hg19). The genes are listed according to their chromosomal position. 

Gene 
name 

Description Subcellular localization Disease association 

VKORC1L1 vitamin K epoxide reductase 
complex, subunit 

Membrane; Multi-pass membrane 
protein (Potential) 

No 

GUSB glucuronidase, beta Lysosomes Mucopolysaccharidosis 
type 7 

ASL argininosuccinate lyase isoform 1 n.a. Arginosuccinicaciduria 
(ARGINSA) 

CRCP calcitonin gene-related peptide-
receptor 

Nucleus (By similarity). Cell 
membrane; Peripheral membrane 

protein; Cytoplasmic side (By 
similarity) 

No 

TPST1 tyrosylprotein sulfotransferase 1 
Golgi apparatus membrane; Single-
pass type II membrane protein (By 

similarity) 
No 

LOC285908 hypothetical protein LOC285908 n.a. No 

KCTD7 potassium channel tetramerisation 
domain 

n.a. Progressive myoclonic 
epilepsy type 3 (EPM3) 

RABGEF1 RAB guanine nucleotide exchange 
factor (GEF) 1 

n.a. No 

C7orf42 hypothetical protein LOC55069 Membrane; Multi-pass membrane 
protein (Potential) 

No 

SBDS Shwachman-Bodian-Diamond 
syndrome protein 

Cytoplasm (By similarity) Schwachman-Diamond 
syndrome (SDS)  

TYW1 radical S-adenosyl methionine and 
flavodoxin 

n.a. No 

 

The first gene to be screened for mutations in the eight patients sharing homozygosity 

over this region was KCTD7 (NM_153022.3), encoding for the potassium channel 

tetramerization domain-containing 7 protein. Previously, KCTD7 defects had been 

associated with PME type 3 in a Moroccan family with three affected offspring (van 

Bogaert et al., 2007) where the nonsense p.Arg99X in exon 2 had been found to segregate 

with the disease phenotype in the family. The three affected Moroccan patients presented 

with epilepsy as the initial disease symptom at a mean age of 19 months (range 16-24 
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months). Other clinical symptoms involved psychomotor delay, ataxia, myoclonus, and 

anarthria. After a series of metabolic tests, biopsy examination, EM analysis that was 

negative for the detection of storage material characteristic of NCLs, and molecular 

analyses to exclude other causes of PME, it was concluded that the patients were suffering 

from a novel form of PME, termed PME type 3 (EPM3; van Bogaert et al., 2007). 

Screening of the KCTD7 coding exons and exon-intron junctions revealed mutations in 

two of the patients that showed homozygosity over the KCTD7 locus. Patient l3 was 

homozygous for the missense causing mutation c.280C>T (p.Arg94Trp) in exon 2 and 

patient N4103 was homozygous for the second missense change c.818A>T (p.Asn273Ile) 

in exon 4 (Figure 14). None of the remaining six patients (Figure 13) carried mutations in 

KCTD7. The latter could be explained by the inability to detect deletions or insertions in 

KCTD7 or other types of mutations such as intronic or promoter region mutations with 

the screening methods used. The association of rearrangements of the region 7q11.23, 

located 6 Mb downstream of the region in which KCTD7 resides, with 

neurodevelopmental syndromes such as the Williams-Beuren syndrome (Schubert, 2009), 

further supports the neurological relevance of this chromosomal segment and of some of 

the genes that reside within it. Fluorescence In Situ Hybridization (FISH) analyses or 

cDNA screening, had patient mRNA been available, would have been helpful in order to 

evaluate such changes and even to detect transcript variants that might have been missed 

during this analysis. 

Following identification of mutations in KCTD7 the second cohort of 107 Turkish patients 

and one Pakistani family with two affected siblings which remained with no molecular 

genetic diagnosis were screened. Of these, seven patients from five small families carried 

mutations in KCTD7. The siblings of the Pakistani family (Pak4 and Pak5) were 

homozygous for the missense c.322C>A (p.Leu108Met). Patient N2703 was compound 

heterozygous for the two missense-causing mutations c.343G>T (p.Asp115Tyr) and 

c.818A>T (p.Asn273Ile). Patients N3503 and N15103 were homozygous for the single 

base deleting mutation c.594delC, resulting in a frameshift and predicting a prematurely 

truncated protein by 16 amino acids (p.Ile199SerfsX74). Finally, the siblings of family 

N126 (N12604 and N12606) were homozygous for a three-base pair deletion 
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(c.861_863delATG), producing the peptide change p.Trp289X. With the six novel 

mutations reported in study IV the spectrum of KCTD7 affecting changes has risen to 

seven (Figure 14) and the number of families positive for mutations in this gene to eight. 

No mutations were identified in the 22 patients with a confirmed NCL diagnosis justified 

by the identification of storage material upon EM examination. 

The mutations p.Arg94Trp, p.Leu108Met, p.Asp115Tyr, and p.Trp289X are specific for 

the families in which they were identified. The fact that p.Asn273Ile is carried by both 

patients N2703 and N4103, and p.Ile199SerfsX74 by both N3503 and N15103, suggest 

either that each pair of patients shares a common ancestor, or that the affected residues 

represent relatively frequently mutable sites. 

Different reasons that argue in favor of the identified KCTD7 sequence variants having a 

disease-causing role exist. For the families in which parent samples were available the 

mutations segregated with the disease phenotype. None of the mutations was detected in 

at least 150 ethnically matched control chromosomes screened. KCTD7 has orthologues 

in several species across which it is highly conserved, and the majority of mutations 

identified affect conserved residues. Finally, different types of mutations have been 

detected in KCTD7, including missense, frameshift-causing, deletions and nonsense (this 

study; van Bogaert et al., 2007). 
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Figure 14. Schematic representation of the KCTD7 gene (upper half of the figure) and protein (lower half) 

and relative position of the mutations identified. The exons are shown as grey cylinders and are in scale. In 

the gene representation the introns are indicated as black lines and the untranslated regions as non-

numbered dark grey boxes. In the protein representation the full-length peptide is shown as a grey cylinder, 

and the BTB/POZ domain that it carries as a darker shaded box. The positions of the mutations are 

indicated by the arrows. 

 

The effect of the frameshift-causing p.Ile199SerfsX74 is predicted to be deleterious since 

the mutation introduces 74 novel amino acids before terminating the mutant peptide 

prematurely by 16 amino acids. Determining the impact of the missense mutations, 

however, is not as straightforward. In silico prediction programs suggested a probably 

damaging role for p.Arg94Trp, p.Leu108Met and p.Asn273Ile, which affect highly 

conserved residues, and a benign impact on the protein level for p.Asp115Tyr, which 

could be a consequence of the non-conservation of the p.Asp115 across all vertebrates 

species evaluated (such as zebrafish and the puffer fish). Despite the conservation data and 

the in silico predictions, p.Asp115Tyr is believed to be disease-associated because it is 

absent from the control chromosomes evaluated and because it is detected in compound 

heterozygosity with the probably damaging p.Asn273Ile. Under a Mendelian recessive 
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model of inheritance in the case of patient N2703 (compound heterozygous for 

p.Asp115Tyr and p.Asn273Ile), p.Asp115Tyr needs to be disease-causing, and if not 

p.Asn273Ile needs to be combined with a second mutation that was not identified with 

the screening methods used, such as a genomic deletion.  

The functional consequence of the in-frame deletion p.Trp298X is not easy to prove as 

the encoded mutant protein differs from the reference peptide only in that the former 

lacks the tryptophan residue prior to the termination codon (p.Trp289). A peptide with 

the same amino acid composition is also produced by the transcript variant 2 of KCTD7 

(NM_001167961.2), which is expressed in several cDNAs from different brain regions 

according to AceView 

(http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/av.cgi?db=human&term=KCT

D7&submit=Go). Nevertheless, the DNA sequence through which two proteins with 

identical amino acid composition are ultimately produced differs between the two cases. 

In the case of family N126 the change detected on the DNA level was not identified in 

150 Turkish control chromosomes, and segregated perfectly with the disease phenotype. 

Furthermore, the presence of p.Trp289X results in complete loss of the longer isoform 

produced by variant 1, a fact that could have a major effect on protein processing and 

function. 

None of the identified changes affect residues that receive post-translational modifications 

such as sites of phosphorylation or glycosylation. Instead, prediction programs suggest a 

putative soluble protein with cytosolic distribution and no signal peptide along its 

sequence (SOSUI: http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html). KCTD7 is 

predicted to be phosphorylated at p.Tyr131, p.Tyr162, p.Tyr163, p.Tyr200, and 

p.Tyr202 (PhosphoSitePlus http://www.phosphosite.org/homeAction.do) but not to 

have any N-glycosylation sites (PSORT: http://psort.hgc.jp/). 
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5.4.3.2  Subce l lu lar local izat ion o f  KCTD7 (IV) 

To address the intracellular distribution of KCTD7 constructs were generated whereby 

the protein was tagged N- or C-terminally with HA (wtHAKCTD7 and wtKCTD7HA). 

Overexpression of wtHAKCTD7 in COS-1, BHK, and HeLa cells followed by 

immunofluorescence analysis revealed a wide distribution of KCTD7 across the cell, 

compatible with cytoplasmic localization. This localization was corroborated upon 

permeabilization of the PM of BHK cells with saponin, in which case a marked reduction 

of KCTD7 staining was observed in treated versus untreated cells. Additionally, KCTD7 

immunostaining did not overlap with that of the cell structures evaluated (endosomes, 

lysosomes, Golgi, and PM).  

To study the protein localization in a more natural context localization of endogenous 

KCTD7 was addressed in E14 mouse hippocampal neurons, in which similar to the 

overexpression experiments KCTD7 displayed a diffuse pattern of distribution across the 

cell soma. However, in the E14 neurons the protein was not confined only to the cell 

soma but was also transported to the varicosities of the neuronal axons and as far as the 

tips of the growing cones, suggesting an important role for KCTD7 across the whole cell. 

Similar to the experiments using tagged constructs, endogenous KCTD7 also does not 

seem to co-localize with any of the organelle markers tested (PDI, lysosomes, β-tubulin), 

with markers against pre- or post-synaptic vesicles (SYP and PSD-95, respectively) or with 

a vesicular GABA transporter (VGAT). 

Taken together, the localization studies in different cell lines and cell types reveal that 

KCTD7 is a soluble cytosolic protein with expression throughout the cell. The latter has 

also been confirmed in an independent study whereby the localization of overexpressed 

KCTD7 was evaluated by immunofluorescence and confocal microscopy in COS7 cells 

(Azizieh et al., 2011). The concordant findings in the two independent studies in which 

the same experimental sets were used differing only in the antibodies utilized for detection 

of endogenous and tagged KCTD7, make it safe to conclude that KCTD7 is a cytosolic 

protein. 
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5.4.3.3  Impact  o f  KCTD7 mutat ions on the encoded prote in (IV) 

To evaluate the impact of missense mutations on the encoded protein, the effect of three 

of them on intracellular localization and on protein expression was studied. The 

cytoplasmic distribution of KCTD7 was not affected in the presence of the missense 

p.Arg94Trp, p.Asp115Tyr, and p.Asn273Ile, representing patient mutations. In western 

blot analysis none of the three mutations seemed to alter the electrophoretic mobility of 

KCTD7 or its expression levels. These findings establish that the naturally occurring 

missense mutations do not interfere with protein localization and targeting or expression 

levels but are instead likely to exert their impact on the functional properties of KCTD7. 

The same can be anticipated for the frameshift p.Ile199SerfsX74 which introduces 74 

novel amino acids after codon p.Ile199, significantly changing the produced protein 

composition which can also be targeted for nonsense-mediated decay. As for the in-frame 

deletion p.Trp289X, the mutation’s impact is not easy to predict. Nevertheless, it can be 

hypothesized that in its presence the longest isoform of KCTD7 (isoform 1; UniProt 

accession number ID: Q96MP8-1) becomes absent, and the mode in which the mutant 

peptide is regulated and processed can be significantly different. 

 

5.4.3.4  Spatiotemporal  express ion o f  KCTD7 in the mouse brain (IV) 

To obtain insights into the spatiotemporal expression of KCTD7, different cell-types of 

the brain were assessed for expression of the protein in western blot analyses. 

Additionally, immunohistochemical sections from the brain of mice of different ages were 

used for detection of endogenous KCTD7. The protein was predominantly expressed in 

the neurons already at E14, but not in microglia and astrocyte cells. 

Immunohistochemistry analyses further supported these findings, showing a neuronal 

expression of KCTD7 throughout the brain with only few neuronal populations, such as 

the interneurons of the molecular layer of the cerebellum, being negative for KCTD7 

immunostaining. The most prominent sites of KCTD7 expression were the cortex, the 

pyramidal and granular cell layers and the cerebellar Purkinje cells. 
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From a second standpoint, cerebellar protein lysates obtained from mice of different ages 

(P5, P14, 2 month, and 4 months old) showed that expression of KCTD7 is present 

already at P5 and it remains constant throughout the brain maturation. The same 

conclusion was supported by immunohistochemical evaluation of regional expression in 

P7, P10, P14, 2mo, and 4mo mouse brains, in which KCTD7 expression was constant. 

The most prominent sites of expression were the cortical neurons, in the granular and 

pyramidal cell layers of the hippocampus, as well as in the cerebellar Purkinje cells, in line 

with an independent study (Azizieh et al., 2011).  

Taken together, the findings from these experiments denote the neuronal specificity of 

KCTD7 and its crucial role in both the developing and mature brain, suggesting an 

important role of the protein in neuronal function and survival.  

The predominant role of KCTD7 in neurons was recently supported by a study reporting 

that when KCTD7 is overexpressed in neurons the cells become hyperpolarized and 

higher current values are required for action potential firing (Azizieh et al., 2011). Hence, 

KCTD7 deficiency is anticipated to lower the threshold of PM resting potential and 

promote the neuronal hyper-excitability that is a hallmark of epileptic events (Azizieh et 

al., 2011). Although it would be tempting to speculate that KCTD7 is involved in voltage-

gated potassium (Kv) ion channel formation and function, justified by the homology to the 

Kv T1 domain and the electrophysiology evidence, its cytoplasmic distribution does not 

support such a hypothesis. Instead it was shown that KCTD7 interacts with Cullin-3, a 

component of the E3 ubiquitin ligase (Azizieh et al., 2011), similar to another member of 

the KCTD family, KCTD5 (Dementieva et al., 2009). It was thus suggested that KCTD7 

and KCTD5 might participate together with Cullin-3 in the formation of a functional E3 

ubiquitin ligase that promotes proteasome-mediated degradation of proteins that 

indirectly affect ion channel function and conductance (Azizieh et al., 2011). The non-

direct association of KCTD family members with ion channels was further shown in 

experiments where KCTD5 was explicitly shown to not be associated with any of the 

Kv4.2, Kv3.4, Kv2.1, or Kv1.2 channels (Dementieva et al., 2009). Finally, KCTD 

members can also be associated with many other phenotypes as in the case of KCTD8, 

KCTD12, and KCTD16 that act as auxiliary subunits of the GABAB receptor (Schwenk 
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et al., 2010; Bartoi et al., 2010), KCTD11 that acts as a tumor suppressor causing 

neuroblastoma when defective (Argenti et al., 2005), and KCTD15 that confers 

susceptibility to adult onset obesity (Elks et al., 2010). 

To date the precise role of KCTD7 remains elusive. The protein’s neuronal specificity is 

in favor of KCTD7 having a role in neuronal survival and protection, which could be 

displayed through maintenance of their proper electrophysiological properties. In order 

to provide answers to these open questions, the exact nature of the role of KCTD7 awaits 

to be addressed in future detailed functional studies. 

 

5.4.3.5  Clinical  phenotype caused by mutat ions in KCTD7 (IV) 

The disease associated with mutations in KCTD7 begins at a mean age of 19 months, with 

the youngest reported patient having disease onset at 10 months of age and the oldest at 3 

years (van Bogaert et al., 2007; study IV). The presenting symptom was epilepsy in almost 

all patients. Only in patient N12604 was ataxia reported as the presenting symptom. All 

reported patients develop myoclonic seizures, although other seizure types such as 

generalized tonic-clonic, atonic and hypomotor seizures have also been reported (van 

Bogaert et al., 2007; study IV). The seizures have been reported to either fully or partially 

be controlled with combined polytherapy (study IV; van Bogaert et al., 2007). Three 

patients developed refractory seizures. The course of the disease is progressive, with the 

patients progressively losing their mental and motor skills, their speech, becoming 

unambulatory within 1-2 years after disease onset, and being unable to communicate 

with their environment. All metabolic tests performed were normal for all patients for 

whom this information was available (study IV; van Bogaert et al., 2007). The retinal 

examination of all reported patients was normal, although some have been reported to 

not be able to follow objects, which is thought to be caused by the mental regression. 

Neurodegeneration, as determined by MRI analysis revealing cerebellar and cerebral 

atrophy, is described in all KCTD7 positive patients.  

Clinically, KCTD7 disease greatly resembles the classic and variant LINCL subtypes of 

NCL. However, KCTD7 does not belong to the NCL spectrum of genes. Many reasons 
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argue in favor of the latter conclusion. First, tissue biopsy examination of four patients (l3, 

N15103 and Pak4 in this study; van Bogaert et al., 2007) did not contain the 

characteristic NCL storage material which represents a hallmark pathological finding of 

NCLs. Second, none of the 22 confirmed NCL patients carried mutations in KCTD7. 

Finally, the KCTD7 mutation positive patients did not have findings of retinal 

abnormality on opthalmological examination. These small clinical differences provide 

some guidance to physicians when providing differential diagnosis of patients with early 

childhood onset neurological deterioration. When patients have myoclonic seizures, 

normal retinal findings, normal biochemical test findings and remain negative for 

hallmark pathological findings, KCTD7 screening should be considered. Nevertheless, 

clinical distinction among the neurodegenerative childhood disorders cannot be achieved 

on the basis of age of onset or symptomatology alone. This leaves molecular genetic 

testing for the causative genes as the only alternative towards providing an accurate 

diagnosis.  
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6. CONCLUSIONS AND FUTURE PROSPECTS 

 

 

This thesis expanded the molecular genetic background of CLN7 disease, caused by 

mutations in MFSD8, by identifying the pathogenic mutations in 36 patients and by 

characterizing the majority of them also clinically. The identification of 36 patients from 

nine different ethnic backgrounds has not only established MFSD8 as a relatively 

common cause of NCLs, and consequently childhood symptomatic epilepsy, but also 

emphasized the worldwide distribution of defects in this gene, which should be considered 

in patients with a vLINCL phenotype. Unfortunately, the efforts to provide tools that 

would facilitate diagnosis of CLN7 disease, have not revealed differences in disease onset 

and progression, in symptomatology, and/or in pathology. Instead, clinical diagnosis of 

such syndromes based on the clinical picture of the patient alone is very difficult today. 

Differential diagnosis is especially challenging in the clinically homogeneous and 

genetically heterogeneous LINCL group where molecular genetic testing remains the 

only alternative to provide an accurate diagnosis. Identification of common or population 

specific mutations can greatly facilitate the molecular diagnosis in groups such as the 

Roma patients from the former Czechoslovakia described here, allowing the families to 

benefit from prenatal testing and carrier status evaluation analyses.  

The protein encoded by MFSD8 was the first among the NCL proteins to be predicted to 

have a putative transporter function. The expression of MFSD8 is ubiquitous in the brain 

with the neurons being the primary cell-type expressing MFSD8. The lysosomal 

membrane is the intracellular site where MFSD8 is delivered and performs its transporter 

role. Identification of the major lysosomal determinant mediating this sorting has been of 

primary importance towards directing MFSD8 to the PM where the protein’s function 

and properties, as well as its substrate specificity will be more easily addressed. Defects in 

this gene have been established to not interfere with the protein’s normal distribution, 

suggesting that they instead affect the functional properties of the resultant peptides. 

Although light has been shed on the primary protein properties it is not until more 

experiments have been performed that the function of MFSD8 will be fully elucidated. 
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In this study a total of 85 patients with childhood onset PME have been provided with a 

molecular genetic diagnosis. Despite the phenotypic convergence seen among some of 

them, exemplified especially in the case of the vLINCL subtypes, several cases of 

phenotypic divergence have also been detected. Hence, many patients with mutations in 

the same gene and strikingly different phenotypes have been identified, such as the 

MFSD8 positive Dutch patient with onset at 11 years and protracted disease course. It is 

now becoming clearer that although a fraction of such cases can be explained by the 

severity of the mutation (missense versus nonsense) and the domain it affects, some other 

cases, especially in affected siblings carrying the same disease-causing mutation(s), can 

only be explained by the contribution to the phenotype of genetic modifiers. One such 

tempting hypothesis is to evaluate the possibility of the NCL loci having epistatic 

interactions among them.  

Several clinical entities exist today with phenotypes that clinically resemble NCLs but lack 

the confirmatory detection of autofluorescent material on EM examination. In clinical 

practice such patients present as PME and it is not until the genetic defects have been 

identified that they can be provided with an accurate diagnosis. Disorders that can be 

confounded with childhood onset NCL or PME can be NBIA and INAD, caused by 

mutations in PLA2G6 and characterized, though not always, by high brain iron 

accumulation in the brain.  

In the attempt to further dissect the molecular background of childhood onset PMEs, 

targeted next-generation sequencing identified a very rare homozygous change in the 

TXNDC6 gene in one inbred family with two affected siblings. However, the inability to 

identify a second family with mutations in the same gene means that TXNDC6 cannot be 

unequivocally linked to disease causality. Instead its relevance to disease must await the 

evaluation of larger collections of patients with similar PME phenotypes. Unlike 

TXNDC6, the molecular basis of a distinct clinical entity, EPM type 3, has been 

characterized in seven families with mutations in KCTD7. Although the gene had 

previously been described as the underlying cause of EPM3 in a single family, the disease 

role of KCTD7 is now well established having identified seven more families carrying six 

different defects in it. The clinical phenotype caused by mutations in KCTD7 has onset in 
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early childhood, with the patients usually presenting with seizures and having a rapidly 

progressive course that leads to severe debilitation within 3 years of disease onset. 

Therefore, KCTD7 should be added to the panel of genes evaluated in differential 

diagnosis of patients with early onset PMEs. From a functional standpoint, the prominent 

role of KCTD7 across the cytoplasmic matrix of neurons, together with the constant 

expression from the embryonic life until brain maturation and the fact that KCTD7 

overexpression alters the neuronal excitability, suggest a unique role in nervous system 

development and possibly regulation for KCTD7. 

Despite the progress made in identifying several PME-associated genes, several patients 

(130 in this study alone) remain without a molecular genetic diagnosis in clinical practice. 

The advent of the new technologies together with collaborative efforts in which the 

clinically thoroughly characterized patient samples are combined is likely to speed up 

disease gene identification in the years to come. 
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