523 research outputs found
The role of anaemia in oxidative and genotoxic damage in transfused β-thalassaemic patients.
Redox imbalance and genotoxic damage are commonly observed in β thalassaemic patients. The aim of this study was to assess the role of anaemia in oxidative and genotoxic damage in regularly transfused thalassaemic patients, undergoing iron chelation therapy.We studied the relationships of haematological, biochemical and clinical parameters with oxidative (reactive oxygen species and 8-oxo-7,8-dihydro-2'-deoxyguanosine) and genotoxic biomarkers (Comet assay and cytokinesis-block micronucleus test) in blood samples from 105 patients. To reduce the early effect of redox-active iron, samples were collected when pharmacokinetics of the iron chelators ensured their maximum effectiveness. The transfusion regimen, cardiac and hepatic magnetic resonance imaging T2* were evaluated to characterize the patient cohort. Labile plasma iron (LPI) was also assayed.Haemoglobin level had a significant effect on ROS, %DNA in the tail and micronuclei-micronucleated cell frequency (p  0.05). Higher Hb values reduced redox imbalance. LPI, detectable in 50.5% of patients, was related to the number of apoptotic and necrotic lymphocytes (p = 0.03), demonstrating the cytotoxic effect of iron.The results highlight that an adequate transfusion regimen is essential to limit oxidative and genotoxic damage in β-thalassemic patients undergoing chelation therapy.Owing to the higher risk of cancer in the thalassaemic cohorts, specific genotoxicity/oxidative biomarkers should be monitored in order to ameliorate and formulate more personalized disease management
Gut-derived metabolites mediating cognitive development in 5-year-old children: Early-life transplant in mice has lasting effects throughout adulthood
The gut microbiota has been causally linked to cognitive development. We aimed to identify metabolites mediating its effect on cognitive development, and foods or nutrients related to most promising metabolites. Faeces from 5-year-old children (DORIAN-PISAC cohort, including 90 general population families with infants, 42/48 females/males, born in 2011-2014) were transplanted (FMT) into C57BL/6 germ-free mice. Children and recipient mice were stratified by cognitive phenotype, or based on protective metabolites. Food frequency questionnaires were obtained in children. Cognitive measurements in mice included five Y-maze tests until 23 weeks post-FMT, and (at 23 weeks) PET-CT for brain metabolism and radiodensity, and ultrasound-based carotid vascular indices. Children (faeces, urine) and mice (faeces, plasma) metabolome was measured by 1H NMR spectroscopy, and the faecal microbiota was profiled in mice by 16S rRNA amplicon sequencing. Cognitive scores of children and recipient mice were correlated. FMT-dependent modifications of brain metabolism were observed. Mice receiving FMT from high-cognitive or protective metabolite-enriched children developed superior cognitive-behavioural performance. A panel of metabolites, namely xanthine, hypoxanthine, formate, mannose, tyrosine, phenylalanine, glutamine, was found to mediate the gut-cognitive axis in donor children and recipient mice. Vascular indices partially explained the metabolite-to-phenotype relationships. Children's consumption of legumes, whole-milk yogurt and eggs, and intake of iron, zinc and vitamin D appeared to support protective gut metabolites. Overall, metabolites involved in inflammation, purine metabolism and neurotransmitter synthesis mediate the gut-cognitive axis, and holds promise for screening. The related dietary and nutritional findings offer leads to microbiota-targeted interventions for cognitive protection, with long-lasting effects
Health-related quality of life and functional changes in DMD: A 12-month longitudinal cohort study
In Duchenne muscular dystrophy (DMD) little has been reported on the association between clinical outcome measures and patient health-related quality of life (HRQOL) tools. Our study evaluated the relationship between 12 month changes on the Generic Core Scales (GCS), the Multidimensional Fatigue Scale and the Neuromuscular Module of the PedsQL\u2122 with several outcome measures (6 minute walk test, North Star Ambulatory Assessment and timed items) in ambulatory DMD. Ninety-eight ambulatory DMD in a multicentric setting were included in the study. At baseline, the PedsQL\u2122 inventories correlated with almost all the functional measures On the Child Self-Report there was a significant decrease between baseline and 12 months on the PedsQL\u2122 GCS and its first domain, in parallel with the decrement in the functional outcome measures. Correlation between the 12 month changes on the PedsQL\u2122 inventories and functional measures were almost all negligible. Similar results were obtained on the Parent Proxy-Report.In conclusion, PedsQL\u2122 correlates with the level of impairment at baseline, but this does not hold true when 12 month changes are considered. Further studies comparing different tools are needed to better elucidate the complexity of the relationship between HRQOL and functional performances
Liver and White/Brown Fat Dystrophy Associates with Gut Microbiota and Metabolomic Alterations in 3xTg Alzheimer's Disease Mouse Model
Metabolic impairments and liver and adipose depots alterations were reported in subjects with Alzheimer's disease (AD), highlighting the role of the liver-adipose-tissue-brain axis in AD pathophysiology. The gut microbiota might play a modulating role. We investigated the alterations to the liver and white/brown adipose tissues (W/BAT) and their relationships with serum and gut metabolites and gut bacteria in a 3xTg mouse model during AD onset (adulthood) and progression (aging) and the impact of high-fat diet (HFD) and intranasal insulin (INI). Glucose metabolism (18FDG-PET), tissue radiodensity (CT), liver and W/BAT histology, BAT-thermogenic markers were analyzed. 16S-RNA sequencing and mass-spectrometry were performed in adult (8 months) and aged (14 months) 3xTg-AD mice with a high-fat or control diet. Generalized and HFD resistant deficiency of lipid accumulation in both liver and W/BAT, hypermetabolism in WAT (adulthood) and BAT (aging), abnormal cytokine-hormone profiles, and liver inflammation were observed in 3xTg mice; INI could antagonize all these alterations. Specific gut microbiota-metabolome profiles correlated with a significant disruption of the gut-microbiota-liver-adipose axis in AD mice. In conclusion, fat dystrophy in liver and adipose depots contributes to AD progression, and associates with altered profiles of the gut microbiota, which candidates as an appealing early target for preventive intervention.This study was conducted within the JPI-HDHL-INTIMIC Knowledge Platform of Food, Diet, Intestinal Microbiomics, and Human Health (sub-project no. KP-778 MISVILUPPO, Italian Ministry of Agricultural, Food and Forestry Policies, Ministry Decree 23092/7303/19), and the JPI-HDHL-INTIMIC Joint Transnational Research program (project no. INTIMIC-085 GUTMOM, Italian Ministry of Education, University and Research, Ministry Decree no. 946/2019). The funders had no role in study design, data collection and analysis, or preparation of the manuscript. Projects supported by the Joint Action “European Joint Programming Initiative: A Healthy Diet for a Healthy Life (JPI HDHL)” are funded by the respective national/regional funding organisations: Fund for Scientific Research (FRS—FNRS, Belgium); Research Foundation—Flanders (FWO, Belgium); INSERM Institut National de la Santé et de la Recherche Médicale (France); Federal Ministry of Food and Agriculture (BMEL) represented by Federal Office for Agriculture and Food (BLE, Germany); Ministry of Education, University and Research (MIUR), Ministry of agricultural, food, and forestry policies (MiPAAF), National Institute of Health (ISS) on behalf of the Ministry of Health (Italy); the National Institute of Health Carlos III (Spain); The Netherlands Organisation for Health Research and Development (ZonMw, The Netherlands), Austrian Research Promotion Agency (FFG) on behalf of the Austrian Federal Ministry for Education, Science, and Research (BMBWF), Ministry of Science and Technology (Israel), Formas (Sweden). DM gratefully acknowledges funding from the Ministry of Science and Innovation of Spain (ACPIN2017-117 and PID2019-108973RB-C22).Peer reviewe
Novel deep targeted sequencing method for minimal residual disease monitoring in acute myeloid leukemia
A high proportion of patients with acute myeloid leukemia who achieve minimal residual disease (MRD) negative status ultimately relapse because a fraction of pathological clones remains undetected by standard methods. We designed and validated a high-throughput sequencing method for MRD assessment of cell clonotypes with mutations of NPM1, IDH1/2 and/or FLT3-SNVs. For clinical validation, 106 follow-up samples from 63 patients in complete remission were studied by NGS, evaluating the level of mutations detected at diagnosis. The predictive value of MRD status by NGS, multiparameter flow cytometry, or quantitative PCR was determined by survival analysis. The method achieved a sensitivity of 10-4 for SNV mutations and 10-5 for insertions/deletions and could be used in acute myeloid leukemia patients who carry any mutation (86% in our diagnosis data set). NGS-determined MRD positive status was associated with lower disease-free survival (hazard ratio [HR] 3.4, p=0.005) and lower overall survival (HR 4.2, p<0.001). Multivariate analysis showed that MRD positive status by NGS was an independent factor associated with risk of death (HR 4.54, p =0.005) and the only independent factor conferring risk of relapse (HR 3.76, p =0.012). This NGS based method simplifies and standardizes MRD evaluation, with high applicability in acute myeloid leukemia. It also improves upon flow cytometry and quantitative PCR to predict acute myeloid leukemia outcome and could be incorporated in clinical settings and clinical trials.This study was supported by the SubdirecciĂłn General de InvestigaciĂłn Sanitaria (Instituto de Salud Carlos
III, Spain) grants PI13/02387 and PI16/01530, and the CRIS against Cancer foundation grant 2014/0120. M.L. holds a postdoctoral fellowship of the Spanish Ministry of Economy and Competitiveness (FPDI-2013-16409). P.R.P. holds a postdoctoral fellowship of the Spanish of Instituto de Salud Carlos III:
Contrato Predoctoral de FormaciĂłn en InvestigaciĂłn en Salud i-PFIS (IFI 14/00008).S
The Italian version of the Juvenile Arthritis Multidimensional Assessment Report (JAMAR)
The Juvenile Arthritis Multidimensional Assessment Report (JAMAR) is a new parent/patient reported outcome measure that enables a thorough assessment of the disease status in children with juvenile idiopathic arthritis (JIA). We report the results of the cross-cultural adaptation and validation of the parent and patient versions of the JAMAR in the Italian language.The reading comprehension of the questionnaire was tested in 10 JIA parents and patients. Each participating centre was asked to collect demographic, clinical data and the JAMAR in 100 consecutive JIA patients or all consecutive patients seen in a 6-month period and to administer the JAMAR to 100 healthy children and their parents.The statistical validation phase explored descriptive statistics and the psychometric issues of the JAMAR: the 3 Likert assumptions, floor/ceiling effects, internal consistency, Cronbach's alpha, interscale correlations, test-retest reliability, and construct validity (convergent and discriminant validity).A total of 1296 JIA patients (7.2% systemic, 59.5% oligoarticular, 21.4% RF negative polyarthritis, 11.9% other categories) and 100 healthy children, were enrolled in 18 centres. The JAMAR components discriminated well healthy subjects from JIA patients except for the Health Related Quality of Life (HRQoL) Psychosocial Health (PsH) subscales. All JAMAR components revealed good psychometric performances.In conclusion, the Italian version of the JAMAR is a valid tool for the assessment of children with JIA and is suitable for use both in routine clinical practice and clinical research
Recommended from our members
Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey.
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management
Recommended from our members
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation
BACKGROUND:
It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams.
OBJECTIVES:
To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases.
METHODS:
A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions.
RESULTS:
The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache.
CONCLUSIONS:
Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape
Evaluation of polygenic risk scores for breast and ovarian cancer risk prediction in BRCA1 and BRCA2 mutation carriers
Background: Genome-wide association studies (GWAS) have identified 94 common single-nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk and 18 associated with ovarian cancer (OC) risk. Several of these are also associated with risk of BC or OC for women who carry a pathogenic mutation in the high-risk BC and OC genes BRCA1 or BRCA2. The combined effects of these variants on BC or OC risk for BRCA1 and BRCA2 mutation carriers have not yet been assessed while their clinical management could benefit from improved personalized risk estimates.
Methods: We constructed polygenic risk scores (PRS) using BC and OC susceptibility SNPs identified through population-based GWAS: for BC (overall, estrogen receptor [ER]-positive, and ER-negative) and for OC. Using data from 15 252 female BRCA1 and 8211 BRCA2 carriers, the association of each PRS with BC or OC risk was evaluated using a weighted cohort approach, with time to diagnosis as the outcome and estimation of the hazard ratios (HRs) per standard deviation increase in the PRS.
Results: The PRS for ER-negative BC displayed the strongest association with BC risk in BRCA1 carriers (HR = 1.27, 95% confidence interval [CI] = 1.23 to 1.31, P = 8.2 x 10(53)). In BRCA2 carriers, the strongest association with BC risk was seen for the overall BC PRS (HR = 1.22, 95% CI = 1.17 to 1.28, P = 7.2 x 10(-20)). The OC PRS was strongly associated with OC risk for both BRCA1 and BRCA2 carriers. These translate to differences in absolute risks (more than 10% in each case) between the top and bottom deciles of the PRS distribution; for example, the OC risk was 6% by age 80 years for BRCA2 carriers at the 10th percentile of the OC PRS compared with 19% risk for those at the 90th percentile of PRS.
Conclusions: BC and OC PRS are predictive of cancer risk in BRCA1 and BRCA2 carriers. Incorporation of the PRS into risk prediction models has promise to better inform decisions on cancer risk management
- …