85 research outputs found

    Excessive growth hormone expression in male GH transgenic mice adversely alters bone architecture and mechanical strength

    Get PDF
    Patients with acromegaly have a higher prevalence of vertebral fractures despite normal bone mineral density (BMD), suggesting that GH overexpression has adverse effects on skeletal architecture and strength. We used giant bovine GH (bGH) transgenic mice to analyze the effects of high serum GH levels on BMD, architecture, and mechanical strength. Five-month-old hemizygous male bGH mice were compared with age- and sex-matched nontransgenic littermates controls (NT; n=16/group). Bone architecture and BMD were analyzed in tibia and lumbar vertebrae using microcomputed tomography. Femora were tested to failure using three-point bending and bone cellular activity determined by bone histomorphometry. bGH transgenic mice displayed significant increases in body weight and bone lengths. bGH tibia showed decreases in trabecular bone volume fraction, thickness, and number compared with NT ones, whereas trabecular pattern factor and structure model index were significantly increased, indicating deterioration in bone structure. Although cortical tissue perimeter was increased in transgenic mice, cortical thickness was reduced. bGH mice showed similar trabecular BMD but reduced trabecular thickness in lumbar vertebra relative to controls. Cortical BMD and thickness were significantly reduced in bGH lumbar vertebra. Mechanical testing of femora confirmed that bGH femora have decreased intrinsic mechanical properties compared with NT ones. Bone turnover is increased in favor of bone resorption in bGH tibia and vertebra compared with controls, and serum PTH levels is also enhanced in bGH mice. These data collectively suggest that high serum GH levels negatively affect bone architecture and quality at multiple skeletal sites

    Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    Get PDF
    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI’s achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Decomposition cross-correlation for analysis of collagen matrix deformation by single smooth muscle cells

    Get PDF
    Microvascular remodeling is known to depend on cellular interactions with matrix tissue. However, it is difficult to study the role of specific cells or matrix elements in an in vivo setting. The aim of this study is to develop an automated technique that can be employed to obtain and analyze local collagen matrix remodeling by single smooth muscle cells. We combined a motorized microscopic setup and time-lapse video microscopy with a new cross-correlation based image analysis algorithm to enable automated recording of cell-induced matrix reorganization. This method rendered 60–90 single cell studies per experiment, for which collagen deformation over time could be automatically derived. Thus, the current setup offers a tool to systematically study different components active in matrix remodeling

    Longitudinal Imaging of the Ageing Mouse

    Get PDF
    Several non-invasive imaging techniques are used to investigate the effect of pathologies and treatments over time in mouse models. Each preclinical in vivo technique provides longitudinal and quantitative measurements of changes in tissues and organs, which are fundamental for the evaluation of alterations in phenotype due to pathologies, interventions and treatments. However, it is still unclear how these imaging modalities can be used to study ageing with mice models. Almost all age related pathologies in mice such as osteoporosis, arthritis, diabetes, cancer, thrombi, dementia, to name a few, can be imaged in vivo by at least one longitudinal imaging modality. These measurements are the basis for quantification of treatment effects in the development phase of a novel treatment prior to its clinical testing. Furthermore, the non-invasive nature of such investigations allows the assessment of different tissue and organ phenotypes in the same animal and over time, providing the opportunity to study the dysfunction of multiple tissues associated with the ageing process. This review paper aims to provide an overview of the applications of the most commonly used in vivo imaging modalities used in mouse studies: micro-computed-tomography, preclinical magnetic-resonance-imaging, preclinical positron-emission-tomography, preclinical single photon emission computed tomography, ultrasound, intravital microscopy, and whole body optical imaging

    Rapid, automated imaging of mouse articular cartilage by microCT for early detection of osteoarthritis and finite element modelling of joint mechanics

    Get PDF
    Objective Mouse articular cartilage (AC) is mostly assessed by histopathology and its mechanics is poorly characterised. In this study: (1) we developed non-destructive imaging for quantitative assessment of AC morphology and (2) evaluated the mechanical implications of AC structural changes. Methods Knee joints obtained from naĂŻve mice and from mice with osteoarthritis (OA) induced by destabilization of medial meniscus (DMM) for 4 and 12 weeks, were imaged by phosphotungstic acid (PTA) contrast enhanced micro-computed tomography (PTA-CT) and scored by conventional histopathology. Our software (Matlab) automatically segmented tibial AC, drew two regions centred on each tibial condyle and evaluated the volumes included. A finite element (FE) model of the whole mouse joint was implemented to evaluate AC mechanics. Results Our method achieved rapid, automated analysis of mouse AC (structural parameters in <10 h from knee dissection) and was able to localise AC loss in the central region of the medial tibial condyle. AC thickness decreased by 15% at 4 weeks and 25% at 12 weeks post DMM surgery, whereas histopathology scores were significantly increased only at 12 weeks. FE simulations estimated that AC thinning at early-stages in the DMM model (4 weeks) increases contact pressures (+39%) and Tresca stresses (+43%) in AC. Conclusion PTA-CT imaging is a fast and simple method to assess OA in murine models. Once applied more extensively to confirm its robustness, our approach will be useful for rapidly phenotyping genetically modified mice used for OA research and to improve the current understanding of mouse cartilage mechanics
    • 

    corecore