103 research outputs found

    Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Get PDF
    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud‐Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high‐resolution regional chemical transport modeling (WRF‐Chem) combined with high‐resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires

    Fuel performance simulations of ESNII prototypes: Results on the MYRRHA case study

    Get PDF
    Nominal and transient conditions of the ESNII prototypes were investigated in the INSPYRE Project using the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. This Deliverable presents the results of the simulations of the MYRRHA case study: MYRRHA nominal irradiation conditions and the occurrence of a beam power jump (over‐power) transient at the beginning and end of life of the fuel pin in reactor. Besides the application of the reference (“pre‐INSPYRE”) code versions, the activity involves the evaluation of the impact of the improved models of MOX fuel properties developed in INSPYRE and implemented in the three fuel performance codes. These modelling advances concern the thermal properties (thermal conductivity, melting temperature), mechanical properties (thermal expansion, Young’s modulus) and the mechanistic treatment of fission gas behaviour and release from MOX fuels. The results yielded by the pre‐INSPYRE and post‐INSPYRE versions of the codes involved are presented and assessed in terms of evolution in time, as well as axial and radial profiles of significant quantities, both integral and local. Then, the code results are compared with the design limits set for the MYRRHA fuel pins, in particular the maximal fuel temperature admitted, which prevents fuel melting, and the maximal allowed cladding plasticity that ensures the cladding integrity. The outcome is a complete compliance of the pin behaviour with the design limits, respecting adequate margins even in the case of the hottest fuel pin and in the case of beam power jump transients

    Results of the benchmark between pre- and post-INSPYRE code versions on selected experimental cases

    Get PDF
    This report presents the results of the simulation of the SUPERFACT-1, RAPSODIE-I and NESTOR-3 irradiation experiments using the fuel performance codes TRANSURANUS, MACROS, GERMINAL. The simulations aim at the evaluation of the code improvements made during the INSPYRE project. The comparison of the integral pin performance results with experimental measurements available from the irradiation experiments considered and the comparison between the code results are presented. Both the results obtained using the ‘pre-INSPYRE’ code versions and the improved ‘post-INSPYRE’ ones, in which novel data and models originating from other Work Packages of the INSPYRE Project were implemented, are provided

    Assessment of INSPYRE-extended fuel performance codes against the SUPERFACT-1 fast reactor irradiation experiment

    Get PDF
    Design and safety assessment of fuel pins for application in innovative Generation IV fast reactors calls for a dedicated nuclear fuel modelling and for the extension of the fuel performance code capabilities to the envisaged materials and irradiation conditions. In the INSPYRE Project, comprehensive and physics- based models for the thermal-mechanical properties of UePu mixed-oxide (MOX) fuels and for fission gas behaviour were developed and implemented in the European fuel performance codes GERMINAL, MACROS and TRANSURANUS. As a follow-up to the assessment of the reference code versions (“pre- INSPYRE”, NET 53 (2021) 3367e3378), this work presents the integral validation and benchmark of the code versions extended in INSPYRE (“post-INSPYRE”) against two pins from the SUPERFACT-1 fast reactor irradiation experiment. The post-INSPYRE simulation results are compared to the available integral and local data from post-irradiation examinations, and benchmarked on the evolution during irradiation of quantities of engineering interest (e.g., fuel central temperature, fission gas release). The comparison with the pre-INSPYRE results is reported to evaluate the impact of the novel models on the predicted pin performance. The outcome represents a step forward towards the description of fuel behaviour in fast reactor irradiation conditions, and allows the identification of the main remaining gaps

    Comparison of model and ground observations finds snowpack and blowing snow both contribute to Arctic tropospheric reactive bromine

    Get PDF
    International audienceReactive halogens play a prominent role in the atmospheric chemistry of the Arctic during springtime. Field measurements and models studies suggest that halogens are emitted to the atmosphere from snowpack and reactions on wind-blown snow. The relative importance of snowpack and blowing snow sources is still debated, both at local scales and regionally throughout the Arctic. To understand implications of these halogen sources on a pan-Arctic scale, we simulate Arctic reactive bromine chemistry in the atmospheric chemical transport model GEOS-Chem. Two mechanisms are included: 1) a blowing snow sea salt aerosol formation mechanism and 2) a snowpack mechanism assuming uniform molecular bromine production from all snow surfaces. We compare simulations including neither mechanism, each mechanism individually, and both mechanisms to examine conditions where one process may dominate or the mechanisms may interact. We compare the models using these mechanisms to observations of bromine monoxide (BrO) derived from multiple-axis differential optical absorption spectroscopy (MAX-DOAS) instruments on O-Buoy platforms on the sea ice and at a coastal site in UtqiaÄĄvik, Alaska during spring 2015. Model estimations of hourly and monthly average BrO are improved by assuming a constant yield of 0.1% molecular bromine from all snowpack surfaces on ozone deposition. The blowing snow mechanism increases BrO by providing more surface area for reactiv

    Intensification of summer precipitation with shorter time-scales in Europe

    Get PDF
    While daily extreme precipitation intensities increase with global warming on average at approximately the same rate as the availability of water vapor (~7%/°C), a debated topic is whether sub-daily extremes increase more. Modelling at convection-permitting scales has been deemed necessary to reproduce extreme summer precipitation at local scale. Here we analyze multi-model ensembles and apply a 3 km horizontal resolution model over four regions across Europe (S. Norway, Denmark, Benelux and Albania) and find very good agreement with observed daily and hourly summer precipitation extremes. Projections show that daily extreme precipitation intensifies compared to the mean in all regions and across a wide range of models and resolutions. Hourly and 10 min extremes intensify at a higher rate in nearly all regions. Unlike most recent studies, we do not find sub-daily precipitation extremes increasing much more than 7%/°C, even for sub-hourly extremes, but this may be due to robust summer drying over large parts of Europe. However, the absolute strongest local daily precipitation event in a 20 year period will increase by 10%–20%/°C. At the same time, model projections strongly indicate that summer drying will be more pronounced for extremely dry years

    Early Intervention for Children Aged 0 to 2 Years With or at High Risk of Cerebral Palsy International Clinical Practice Guideline Based on Systematic Reviews:International Clinical Practice Guideline Based on Systematic Reviews

    Get PDF
    IMPORTANCE: Cerebral palsy (CP) is the most common childhood physical disability. Early intervention for children younger than 2 years with or at risk of CP is critical. Now that an evidence-based guideline for early accurate diagnosis of CP exists, there is a need to summarize effective, CP-specific early intervention and conduct new trials that harness plasticity to improve function and increase participation. Our recommendations apply primarily to children at high risk of CP or with a diagnosis of CP, aged 0 to 2 years. OBJECTIVE: To systematically review the best available evidence about CP-specific early interventions across 9 domains promoting motor function, cognitive skills, communication, eating and drinking, vision, sleep, managing muscle tone, musculoskeletal health, and parental support. EVIDENCE REVIEW: The literature was systematically searched for the best available evidence for intervention for children aged 0 to 2 years at high risk of or with CP. Databases included CINAHL, Cochrane, Embase, MEDLINE, PsycInfo, and Scopus. Systematic reviews and randomized clinical trials (RCTs) were appraised by A Measurement Tool to Assess Systematic Reviews (AMSTAR) or Cochrane Risk of Bias tools. Recommendations were formed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework and reported according to the Appraisal of Guidelines, Research, and Evaluation (AGREE) II instrument. FINDINGS: Sixteen systematic reviews and 27 RCTs met inclusion criteria. Quality varied. Three best-practice principles were supported for the 9 domains: (1) immediate referral for intervention after a diagnosis of high risk of CP, (2) building parental capacity for attachment, and (3) parental goal-setting at the commencement of intervention. Twenty-eight recommendations (24 for and 4 against) specific to the 9 domains are supported with key evidence: motor function (4 recommendations), cognitive skills (2), communication (7), eating and drinking (2), vision (4), sleep (7), tone (1), musculoskeletal health (2), and parent support (5). CONCLUSIONS AND RELEVANCE: When a child meets the criteria of high risk of CP, intervention should start as soon as possible. Parents want an early diagnosis and treatment and support implementation as soon as possible. Early intervention builds on a critical developmental time for plasticity of developing systems. Referrals for intervention across the 9 domains should be specific as per recommendations in this guideline

    Overview : Integrative and Comprehensive Understanding on Polar Environments (iCUPE) - concept and initial results

    Get PDF
    The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. We set up the ERA-PLANET Strand 4 project "iCUPE - integrative and Comprehensive Understanding on Polar Environments" to provide novel insights and observational data on global grand challenges with an Arctic focus. We utilize an integrated approach combining in situ observations, satellite remote sensing Earth observations (EOs), and multi-scale modeling to synthesize data from comprehensive long-term measurements, intensive campaigns, and satellites to deliver data products, metrics, and indicators to stakeholders concerning the environmental status, availability, and extraction of natural resources in the polar areas. The iCUPE work consists of thematic state-of-the-art research and the provision of novel data in atmospheric pollution, local sources and transboundary transport, the characterization of arctic surfaces and their changes, an assessment of the concentrations and impacts of heavy metals and persistent organic pollutants and their cycling, the quantification of emissions from natural resource extraction, and the validation and optimization of satellite Earth observation (EO) data streams. In this paper we introduce the iCUPE project and summarize initial results arising out of the integration of comprehensive in situ observations, satellite remote sensing, and multi-scale modeling in the Arctic context.Peer reviewe
    • 

    corecore