45 research outputs found
ZMENY V OBSAHU HRUBÉHO PROTEÍNU V SLADOVNÍCKOM JAČMENI VPLYVOM POZBEROVÉHO DOZRIEVANIA
Aim of this experiment was to investigate to what extent post-harvest ripening and
growing locality influenced changes of crude protein content in malting barley and
values of Kolbach index in malt. Results revealed that already in the sixth week after
harvest, amount of crude protein decreased and amount of Kolbach index increased,
due to post-harvest ripening. Moreover climatic conditions during vegetation and
harvest as well as the growing locality significantly influenced (P<0.001) the amount
of crude protein. Higher amount of crude protein was measured in barley from locality
Jakubovany which is situated in colder growing area in comparison with localities
Sládkovičovo and Veľké Ripňnany which are situated in arid growing areas.Cieľom práce bolo zistiť vplyv pozberového dozrievania a pestovateľskej lokality na
zmeny v obsahu hrubého proteínu v zrne jačmeňa a Kolbachovho čísla v slade.
Výsledky ukázali, že v priebehu pozberového dozrievania, už v šiestom týždni po
zbere, hodnoty hrubého proteínu poklesli a hodnoty Kolbachovho čísla vzrástli.
Klimatické podmienky počas vegetácie a počas žatvy ako aj pestovateľská lokalita
preukazne (P<0,001) ovplyvnili obsah hrubého proteínu. Vyšší obsah hrubého
proteínu bol nameraný u jačmeňov pochádzajúcich z lokality Jakubovany, ktorá sa
nachádza v chladnejšej výrobnej oblasti v porovnaní s lokalitami Sládkovičovo
a Veľké Ripňany, ktoré sa nachádzajú v aridnejších klimatických podmienkach
An evaluation of traffic-awareness campaign videos:Empathy induction is associated with brain function within superior temporal sulcus
Acting appropriately within social contexts requires an ability to appreciate others' mental and emotional states. Indeed, some campaign programs designed to reduce anti-social behaviour seek to elicit empathy for the victims. The effectiveness of these campaigns can be evaluated according to the degree to which they induce such responses, but by applying neuroscientific techniques this can be done at the behavioural and neurophysiological level. Neuroimaging studies aimed at identifying the neural mechanisms behind such socio-cognitive and -emotional processes frequently reveal the role of the superior temporal sulcus (STS). We applied this knowledge to assess the effectiveness of traffic-awareness campaign adverts to induce empathic expression. Functional magnetic resonance imaging (fMRI) data were acquired from 20 healthy male volunteers as they watched these campaign videos consisting of a dramatic sequence of events and catastrophic endings, and control videos without such dramatic endings. Among other structures, a significantly greater neural response was observed within bilateral STS, particularly within the right hemisphere, during the observation of campaign relative to control videos. Furthermore, activation in these brain regions correlated with the subjects' empathic expression. Our results develop our understanding of the role of STS in social cognition. Moreover, our data demonstrate the utility of neuroscientific methods when evaluating the effectiveness of campaign videos in terms of their ability to elicit empathic responses. Our study also demonstrates the utility of these specific stimuli for future neuroscientific research
The interacting brain::Dynamic functional connectivity among canonical brain networks dissociates cooperative from competitive social interactions
We spend much our lives interacting with others in various social contexts. Although we deal with this myriad of interpersonal exchanges with apparent ease, each one relies upon a broad array of sophisticated cognitive processes. Recent research suggests that the cognitive operations supporting interactive behaviour are themselves underpinned by several canonical functional brain networks (CFNs) that integrate dynamically with one another in response to changing situational demands. Dynamic integrations among these CFNs should therefore play a pivotal role in coordinating interpersonal behaviour. Further, different types of interaction should present different demands on cognitive systems, thereby eliciting distinct patterns of dynamism among these CFNs. To investigate this, the present study performed functional magnetic resonance imaging (fMRI) on 30 individuals while they interacted with one another cooperatively or competitively. By applying a novel combination of analytical techniques to these brain imaging data, we identify six states of dynamic functional connectivity characterised by distinct patterns of integration and segregation among specific CFNs that differ systematically between these opposing types of interaction. Moreover, applying these same states to fMRI data acquired from an independent sample engaged in the same kinds of interaction, we were able to classify interpersonal exchanges as cooperative or competitive. These results provide the first direct evidence for the systematic involvement of CFNs during social interactions, which should guide neurocognitive models of interactive behaviour and investigations into biomarkers for the interpersonal dysfunction characterizing many neurological and psychiatric disorders. [Abstract copyright: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.
Decomposition, Reformulation, and Diving in University Course Timetabling
In many real-life optimisation problems, there are multiple interacting
components in a solution. For example, different components might specify
assignments to different kinds of resource. Often, each component is associated
with different sets of soft constraints, and so with different measures of soft
constraint violation. The goal is then to minimise a linear combination of such
measures. This paper studies an approach to such problems, which can be thought
of as multiphase exploitation of multiple objective-/value-restricted
submodels. In this approach, only one computationally difficult component of a
problem and the associated subset of objectives is considered at first. This
produces partial solutions, which define interesting neighbourhoods in the
search space of the complete problem. Often, it is possible to pick the initial
component so that variable aggregation can be performed at the first stage, and
the neighbourhoods to be explored next are guaranteed to contain feasible
solutions. Using integer programming, it is then easy to implement heuristics
producing solutions with bounds on their quality.
Our study is performed on a university course timetabling problem used in the
2007 International Timetabling Competition, also known as the Udine Course
Timetabling Problem. In the proposed heuristic, an objective-restricted
neighbourhood generator produces assignments of periods to events, with
decreasing numbers of violations of two period-related soft constraints. Those
are relaxed into assignments of events to days, which define neighbourhoods
that are easier to search with respect to all four soft constraints. Integer
programming formulations for all subproblems are given and evaluated using ILOG
CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table
Functional anatomy of outcome evaluation during Iowa Gambling Task performance in patients with Parkinson's disease: an fMRI study
Abstract The aim of this study was to investigate the functional anatomy of decision-making during the Iowa Gambling Task in patients with Parkinson's disease. We used event-related functional magnetic resonance imaging (fMRI) during a computerized version of IGT to compare 18 PD patients on dopaminergic medication in the ON state and 18 healthy control subjects. Our analyses focused on outcome evaluation following card selection, because we expected this aspect of decision-making to be impaired in PD patients. The PD patients exhibited lower activation of the left putamen than the control group as a reaction to penalty. Using psychophysiological interaction analysis, we identified decreased functional connectivity between the right globus pallidus internus and the left anterior cingulate gyrus in the PD group. In contrast, increased connectivity between these structures was observed after penalty in the control group. Our results suggest altered functioning of the basal ganglia and their connections with the cortical structures involved in the limbic loop (e.g., the limbic fronto-striatal circuit of the basal ganglia) during decision-making in PD patients. Differences in the response to loss could be associated with insufficient negative reinforcement after a loss in PD patients in the ON state in comparison to a healthy population
Subjective visual sensitivity in neurotypical adults : Insights from a magnetic resonance spectroscopy study
Introduction: Altered subjective visual sensitivity manifests as feelings of discomfort or overload elicited by intense and irritative visual stimuli. This can result in a host of visual aberrations including visual distortions, elementary visual hallucinations and visceral responses like dizziness and nausea, collectively referred to as “pattern glare.” Current knowledge of the underlying neural mechanisms has focused on overall excitability of the visual cortex, but the individual contribution of excitatory and inhibitory systems has not yet been quantified. Methods: In this study, we focus on the role of glutamate and γ-aminobutyric acid (GABA) as potential mediators of individual differences in subjective visual sensitivity, measured by a computerized Pattern Glare Test—a series of monochromatic square-wave gratings with three different spatial frequencies, while controlling for psychological variables related to sensory sensitivity with multiple questionnaires. Resting neurotransmitter concentrations in primary visual cortex (V1) and right anterior insula were studied in 160 healthy participants using magnetic resonance spectroscopy. Results: Data showed significant differences in the perception of visual distortions (VD) and comfort scores between men and women, with women generally reporting more VD, and therefore the modulatory effect of sex was considered in a further examination. A general linear model analysis showed a negative effect of occipital glutamate on a number of reported visual distortions, but also a significant role of several background psychological traits. When assessing comfort scores in women, an important intervening variable was the menstrual cycle. Discussion: Our findings do not support that baseline neurotransmitter levels have a significant role in overreactivity to aversive stimuli in neurotypical population. However, we demonstrated that biological sex can have a significant impact on subjective responses. Based on this additional finding, we suggest that future studies investigate aversive visual stimuli while examining the role of biological se
On a Clique-Based Integer Programming Formulation of Vertex Colouring with Applications in Course Timetabling
Vertex colouring is a well-known problem in combinatorial optimisation, whose
alternative integer programming formulations have recently attracted
considerable attention. This paper briefly surveys seven known formulations of
vertex colouring and introduces a formulation of vertex colouring using a
suitable clique partition of the graph. This formulation is applicable in
timetabling applications, where such a clique partition of the conflict graph
is given implicitly. In contrast with some alternatives, the presented
formulation can also be easily extended to accommodate complex performance
indicators (``soft constraints'') imposed in a number of real-life course
timetabling applications. Its performance depends on the quality of the clique
partition, but encouraging empirical results for the Udine Course Timetabling
problem are reported
Copying you copying me:Interpersonal motor co-ordination influences automatic imitation
Moving in a co-ordinated fashion with another individual changes our behaviour towards them; we tend to like them more, find them more attractive, and are more willing to co-operate with them. It is generally assumed that this effect on behaviour results from alterations in representations of self and others. Specifically, through neurophysiological perception-action matching mechanisms, interpersonal motor co-ordination (IMC) is believed to forge a neural coupling between actor and observer, which serves to blur boundaries in conceptual self-other representations and causes positive views of the self to be projected onto others. An investigation into this potential neural mechanism is lacking, however. Moreover, the specific components of IMC that might influence this mechanism have not yet been specified. In the present study we exploited a robust behavioural phenomenon - automatic imitation - to assess the degree to which IMC influences neural action observation-execution matching mechanisms. This revealed that automatic imitation is reduced when the actions of another individual are perceived to be synchronised in time, but are spatially incongruent, with our own. We interpret our findings as evidence that IMC does indeed exert an effect on neural perception-action matching mechanisms, but this serves to promote better self-other distinction. Our findings demonstrate that further investigation is required to understand the complex relationship between neural perception-action coupling, conceptual self-other representations, and social behaviour